浙江农业学报 ›› 2018, Vol. 30 ›› Issue (7): 1211-1217.DOI: 10.3969/j.issn.1004-1524.2018.07.15

• 环境科学 • 上一篇    下一篇

基于随机森林的农耕区土壤有机质空间分布预测

杨煜岑1, 2, 杨联安1, 2, *, 任丽1, 2, 李聪莉3, 朱群娥3, 王天泰3, 李新尧1, 2   

  1. 1.西北大学 陕西省地表系统与环境承载力重点实验室,陕西 西安 710127;
    2.西北大学 城市与环境学院,陕西 西安 710127;
    3.陕西省周至县土壤肥料工作站,陕西 西安 710400
  • 收稿日期:2017-09-29 出版日期:2018-07-20 发布日期:2018-08-02
  • 通讯作者: 杨联安,E-mail: yanglianan@163.com
  • 作者简介:杨煜岑(1994—),女,陕西西安人,硕士研究生,研究方向为地理信息系统在智慧农业上的应用。E-mail: yangyucen104@163.com
  • 基金资助:
    教育部人文社会科学研究规划(10YJA910010); 陕西省农业科技攻关项目(2011K02-11); 西安市科技计划(NC150201,NC1402); 西北大学研究生质量工程提升项目(YZZ17147,YZZ17151)

Prediction for spatial distribution of soil organic matter based on random forest model in cultivated area

YANG Yucen1, 2, YANG Lian'an1, 2, *, REN Li1, 2, LI Congli3, ZHU Qun'e3, WANG Tiantai3, LI Xinyao1, 2   

  1. 1. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an 710127, China;
    2. College of Urban and Environmental Science, Northwest University, Xi'an 710127, China;
    3. Soil and Fertilization Station of Zhouzhi County, Xi'an 710400, China
  • Received:2017-09-29 Online:2018-07-20 Published:2018-08-02

摘要: 以陕西省周至县农耕区为研究区,采集192个土壤样品,通过随机森林模型(random forest, RF)对土壤有机质含量进行回归预测,通过29个(15%)独立验证点对预测结果进行精度验证,并与普通克里格(ordinary kriging,OK)和协同克里格(cokriging,COK)插值结果进行对比分析。结果表明,研究区土壤有机质含量在训练集和验证集中均属于中等变异性,含量处于中等偏低水平,大致表现为中、南部黑河东岸土壤有机质含量相对较高,东北部渭河沿岸含量较低。对变量重要性进行排序,影响研究区土壤有机质的主要因素为数字高程(DEM)和降水量。与OK、COK相比, RF对土壤有机质的预测值和实测值的相关系数(0.782)更高,而平均绝对误差(0.618 g·kg-1)和均方根误差(2.062 g·kg-1)更低,说明RF能够更精确地反映局部土壤有机质含量的空间变化信息。

关键词: 空间预测, 随机森林, 土壤有机质

Abstract: In the present study, the cultivated area of Zhouzhi County in Shaanxi Province was selected as study area with 192 soil samples collected, and the soil organic matter (SOM) content and distribution were predicted based on random forest (RF) model. The prediction accuracy was verified by 29 (15%) independent verification points, and the results were compared with ordinary kriging (OK) and cokriging (COK). It was shown that SOM contents in the training set and verification set were all moderately variable, and were classified into the medium low level. The SOM content was relatively high at east coast of Heihe River in middle and southern area, whereas was relatively low at Weihe River coast in the north-eastern area. By ranking the importance of variables, it was revealed that the main factors affecting the soil organic matter in the study area were elevation and rainfall. Compared with OK and COK, the correlation coefficient of prediction value and actual value of RF (0.782) was higher, yet the mean absolute error (0.618 g·kg-1) and root mean squre error (2.062 g·kg-1) were lower, which suggested that RF model yielded a more realistic spatial distribution of SOM.

Key words: spatial prediction, random forest, soil organic matter

中图分类号: