浙江农业学报 ›› 2021, Vol. 33 ›› Issue (2): 355-368.DOI: 10.3969/j.issn.1004-1524.2021.02.19
收稿日期:
2020-08-12
出版日期:
2021-02-25
发布日期:
2021-02-25
通讯作者:
潘焕学
作者简介:
潘焕学,E-mail: panhuanxue@126.com基金资助:
FU Lisha(), QIN Tao, PAN Huanxue*(
), DENG Jing
Received:
2020-08-12
Online:
2021-02-25
Published:
2021-02-25
Contact:
PAN Huanxue
摘要:
森林保险保费补贴政策在中国实施已超10 a,其能否和在多大程度上促进林业生产的命题亟待科学系统的实证考查。为此,特结合生产者行为理论探寻森林保险保费补贴政策的林业产出规模效应,剖析森林保险保费补贴政策对林业产出的作用机理。在此基础上,基于2001—2017年中国31个省区市的面板数据,以2009年森林保险保费补贴政策冲击为自然实验,综合运用双重差分模型与事件研究模型实证分析该补贴政策对林业产出的影响及其长期动态影响效果,并进行2项安慰剂实验以排除研究结论的2个潜在威胁。结果表明:森林保险保费补贴政策对林业第一产业涉林产值有显著(P<0.1)正向影响,且影响效果随政策实施时间的推进而不断增强。补贴政策实施后,试点省较非试点省区市的林业第一产业涉林产值平均增加了104万元。以2010年为政策冲击年进行稳健性检验,所得结论与以2009年为政策冲击年进行分析的结果一致。安慰剂实验的结果排除了本研究结论的2个潜在威胁。研究结果对中央财政补贴下森林保险的作用持肯定态度,建议应从补贴对象瞄准、补贴规模科学测算、补贴标准合理设定等方面优化森林保险保费补贴政策,以增强其产出效应。
中图分类号:
富丽莎, 秦涛, 潘焕学, 邓晶. 森林保险保费补贴政策的林业产出规模效应实证分析——基于双重差分模型与事件研究模型[J]. 浙江农业学报, 2021, 33(2): 355-368.
FU Lisha, QIN Tao, PAN Huanxue, DENG Jing. Empirical analysis on scale effect of forest output of forest insurance premium subsidy policy in China: based on difference-in-differences model and event study model[J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 355-368.
变量 Variable | 统计指标 Statistical indicator | 符号 Symbol | 平均值 Average | 标准误差 Standard deviation | 中位数 Median | 最小值 Minimum | 最大值 Maximum |
---|---|---|---|---|---|---|---|
林业产出 Forestry output | 林业第一产业涉林产值 Forest-related output of the first forest product/(108 yuan) | EY | 297.84 | 362.36 | 142.39 | 0.95 | 2365.26 |
林业风险 Forestry risk | 成灾面积 Disaster area/(104 hm2) | Disa | 8.60 | 10.33 | 6.14 | 0 | 73.05 |
林业产业重要性 Importance | 地区林业产业产值占GDP的比重 Proportion of forestry industry output to GDP/% | Per | 5.79 | 4.42 | 4.64 | 0 | 28.21 |
林业劳动力 Labor force | 林业劳动力数量 Forestry labor force/104 | Emp | 67.14 | 58.81 | 48.27 | 1.06 | 324.48 |
林地资源 Land resources | 林业用地面积 Forestry land area/(104 hm2) | Lan | 954.43 | 889.31 | 761.83 | 2.25 | 4403.61 |
林业投资 Forestry investment | 林业固定资产投资 Fixed investment/(108 yuan) | Inv | 29.94 | 96.67 | 11.21 | 0.07 | 931.00 |
地区经济发展水平 Economic | 农村人均可支配收入 Rural per capita disposable income/yuan | Inc | 6 772.53 | 4 681.66 | 5 410.00 | 1 404.00 | 27 825 |
development level | 城镇化率 Urbanization rate/% | Urb | 49.85 | 15.11 | 48.44 | 20.71 | 89.61 |
表1 变量汇总与描述性统计表
Table 1 Variable summary and descriptive statistics
变量 Variable | 统计指标 Statistical indicator | 符号 Symbol | 平均值 Average | 标准误差 Standard deviation | 中位数 Median | 最小值 Minimum | 最大值 Maximum |
---|---|---|---|---|---|---|---|
林业产出 Forestry output | 林业第一产业涉林产值 Forest-related output of the first forest product/(108 yuan) | EY | 297.84 | 362.36 | 142.39 | 0.95 | 2365.26 |
林业风险 Forestry risk | 成灾面积 Disaster area/(104 hm2) | Disa | 8.60 | 10.33 | 6.14 | 0 | 73.05 |
林业产业重要性 Importance | 地区林业产业产值占GDP的比重 Proportion of forestry industry output to GDP/% | Per | 5.79 | 4.42 | 4.64 | 0 | 28.21 |
林业劳动力 Labor force | 林业劳动力数量 Forestry labor force/104 | Emp | 67.14 | 58.81 | 48.27 | 1.06 | 324.48 |
林地资源 Land resources | 林业用地面积 Forestry land area/(104 hm2) | Lan | 954.43 | 889.31 | 761.83 | 2.25 | 4403.61 |
林业投资 Forestry investment | 林业固定资产投资 Fixed investment/(108 yuan) | Inv | 29.94 | 96.67 | 11.21 | 0.07 | 931.00 |
地区经济发展水平 Economic | 农村人均可支配收入 Rural per capita disposable income/yuan | Inc | 6 772.53 | 4 681.66 | 5 410.00 | 1 404.00 | 27 825 |
development level | 城镇化率 Urbanization rate/% | Urb | 49.85 | 15.11 | 48.44 | 20.71 | 89.61 |
变量 Variable | R1 | R2 | R3 |
---|---|---|---|
Ti,t*di,t | 165.000*** (58.400) | 104.000** (49.200) | 74.800* (44.200) |
di,t | 372.000*** (27.100) | 127.000*** (27.300) | 37.500 (28.800) |
Ti,t | 84.800*** (20.700) | -117.000*** (32.200) | -21.200 (22.400) |
Inv | — | 0.074 (0.132) | 0.425*** (0.106) |
Urb | — | -367.000*** (92.600) | -179.000* (105.000) |
Inc | — | 0.032*** (0.006) | 0.061*** (0.007) |
Per | — | 3 690.000*** (490.000) | 1 570.000*** (375.000) |
Lan | — | 0.003 (0.010) | 0.014 (0.012) |
Emp | — | 0.814*** (0.169) | 1.036*** (0.166) |
Disa | — | -1.771*** (0.677) | -0.468 (0.772) |
常数项 Constant | 84.200*** (6.375) | -23.600 (35.100) | -81.600** (35.200) |
表2 以2010年为政策冲击年的基准回归结果
Table 2 Regression results with 2010 as policy impact year
变量 Variable | R1 | R2 | R3 |
---|---|---|---|
Ti,t*di,t | 165.000*** (58.400) | 104.000** (49.200) | 74.800* (44.200) |
di,t | 372.000*** (27.100) | 127.000*** (27.300) | 37.500 (28.800) |
Ti,t | 84.800*** (20.700) | -117.000*** (32.200) | -21.200 (22.400) |
Inv | — | 0.074 (0.132) | 0.425*** (0.106) |
Urb | — | -367.000*** (92.600) | -179.000* (105.000) |
Inc | — | 0.032*** (0.006) | 0.061*** (0.007) |
Per | — | 3 690.000*** (490.000) | 1 570.000*** (375.000) |
Lan | — | 0.003 (0.010) | 0.014 (0.012) |
Emp | — | 0.814*** (0.169) | 1.036*** (0.166) |
Disa | — | -1.771*** (0.677) | -0.468 (0.772) |
常数项 Constant | 84.200*** (6.375) | -23.600 (35.100) | -81.600** (35.200) |
变量Variable | R1 | R2 | R3 |
---|---|---|---|
Ti,t*di,t | 196.000*** (48.100) | 169.000*** (48.500) | 85.500* (51.100) |
di,t | 348.000*** (32.000) | 126.000*** (30.200) | 42.500 (35.400) |
Ti,t | 115.000*** (21.000) | -13.400 (3.160) | 9.036 (22.700) |
Inv | — | 0.076 (0.136) | 0.450*** (0.106) |
Urb | — | -409.000*** (115.000) | -191.000 (144.000) |
Inc | — | 0.030*** (0.007) | 0.059*** (0.009) |
Per | — | 3 180.000*** (487.000) | 1 530.000*** (374.000) |
Lan | — | -0.013 (0.010) | -0.023* (0.013) |
Emp | — | 0.919*** (0.168) | 1.291*** (0.179) |
Disa | — | 1.900** (0.773) | -0.014 (0.885) |
常数项 Constant | 104.000*** (8.156) | 39.800 (42.300) | -62.000 (46.900) |
表3 以2010年为政策冲击年的稳健型检验结果
Table 3 Robustness test results with 2010 as policy impact year
变量Variable | R1 | R2 | R3 |
---|---|---|---|
Ti,t*di,t | 196.000*** (48.100) | 169.000*** (48.500) | 85.500* (51.100) |
di,t | 348.000*** (32.000) | 126.000*** (30.200) | 42.500 (35.400) |
Ti,t | 115.000*** (21.000) | -13.400 (3.160) | 9.036 (22.700) |
Inv | — | 0.076 (0.136) | 0.450*** (0.106) |
Urb | — | -409.000*** (115.000) | -191.000 (144.000) |
Inc | — | 0.030*** (0.007) | 0.059*** (0.009) |
Per | — | 3 180.000*** (487.000) | 1 530.000*** (374.000) |
Lan | — | -0.013 (0.010) | -0.023* (0.013) |
Emp | — | 0.919*** (0.168) | 1.291*** (0.179) |
Disa | — | 1.900** (0.773) | -0.014 (0.885) |
常数项 Constant | 104.000*** (8.156) | 39.800 (42.300) | -62.000 (46.900) |
事件窗口 Event window | R1 | R2 | R3 |
---|---|---|---|
政策实施前Before policy implementation | |||
[-4,-3] | 3.000 | 98.000 | 63.000 |
(97.000) | (93.000) | (92.000) | |
[-2,-1] | 47.000 | 64.000 | 47.000 |
(97.000) | (93.000) | (92.000) | |
政策实施后After policy implementation | |||
[1,3] | 100.000 | 140.000* | 74.000 |
(84.000) | (82.000) | (81.000) | |
[4,6] | 180.000** | 180.000** | 85.000 |
(84.000) | (82.000) | (81.000) | |
[7,9] | 280.000*** | 290.000*** | 180.000* |
(97.000) | (94.000) | (93.000) | |
Inv | — | 0.768*** | 0.784*** |
(0.126) | (0.124) | ||
Urb | — | 270.000* (0.015) | 580.000*** (0.018) |
Inc | — | 0.529 (0.403) | 0.607 (0.356) |
Per | — | 6800.000*** (550.000) | 5900.000* (430.000) |
Lan | — | -0.011 | -0.411** |
(0.169) | (0.173) | ||
Emp | — | -1.000** | -0.800 |
(0.520) | (0.512) | ||
Disa | — | -4.939*** | -4.475*** |
(1.358) | (1.338) | ||
常数项 | -240.000*** | -410.000*** | 1 200.000*** |
Constant | (57.000) | (120.000) | (450.000) |
表4 以2009年为政策冲击年的进一步事件研究结果
Table 4 Results of further event studies with 2009 as policy impact year
事件窗口 Event window | R1 | R2 | R3 |
---|---|---|---|
政策实施前Before policy implementation | |||
[-4,-3] | 3.000 | 98.000 | 63.000 |
(97.000) | (93.000) | (92.000) | |
[-2,-1] | 47.000 | 64.000 | 47.000 |
(97.000) | (93.000) | (92.000) | |
政策实施后After policy implementation | |||
[1,3] | 100.000 | 140.000* | 74.000 |
(84.000) | (82.000) | (81.000) | |
[4,6] | 180.000** | 180.000** | 85.000 |
(84.000) | (82.000) | (81.000) | |
[7,9] | 280.000*** | 290.000*** | 180.000* |
(97.000) | (94.000) | (93.000) | |
Inv | — | 0.768*** | 0.784*** |
(0.126) | (0.124) | ||
Urb | — | 270.000* (0.015) | 580.000*** (0.018) |
Inc | — | 0.529 (0.403) | 0.607 (0.356) |
Per | — | 6800.000*** (550.000) | 5900.000* (430.000) |
Lan | — | -0.011 | -0.411** |
(0.169) | (0.173) | ||
Emp | — | -1.000** | -0.800 |
(0.520) | (0.512) | ||
Disa | — | -4.939*** | -4.475*** |
(1.358) | (1.338) | ||
常数项 | -240.000*** | -410.000*** | 1 200.000*** |
Constant | (57.000) | (120.000) | (450.000) |
事件窗口 Event window | R1 | R2 | R3 |
---|---|---|---|
政策实施前Before policy implementation | |||
[-4,-3] | 55.000 | 13.000 | 10.000 |
(71.000) | (60.000) | (62.000) | |
[-2,-1] | 110.000 | 67.000 | 53.000 |
(71.000) | (61.000) | (62.000) | |
政策实施后After policy implementation | |||
[1,3] | 220.000*** | 140.000*** | 110.000* |
(71.000) | (53.000) | (54.000) | |
[4,6] | 240.000*** | 140.000** | 87.000 |
(71.000) | (54.000) | (55.000) | |
[7,9] | 260.000*** | 160.000* | 100.000 |
(71.000) | (81.000) | (83.000) | |
Inv | — | -0.262* | -0.078 |
(0.137) | (0.143) | ||
Urb | — | 110.000 | 390.000** |
(130.000) | (160.000) | ||
Inc | — | -0.370 (0.194) | -0.648 (0.203) |
Per | — | 5 700.000*** | 4 700.000*** |
(510.000) | (540.000) | ||
Lan | — | 0.062 | -0.220 |
(0.150) | (0.159) | ||
Emp | — | -0.839 (0.487) | -0.691 (0.343) |
Disa | — | -1.761 | -2.042 |
(1.226) | (1.239) | ||
常数项 | -220.000*** | -270.00*** | 280.000 |
Constant | (57.000) | (100.000) | (400.000) |
表5 以2010年为政策冲击年的进一步事件研究结果
Table 5 Further study results of events with 2010 as policy impact year
事件窗口 Event window | R1 | R2 | R3 |
---|---|---|---|
政策实施前Before policy implementation | |||
[-4,-3] | 55.000 | 13.000 | 10.000 |
(71.000) | (60.000) | (62.000) | |
[-2,-1] | 110.000 | 67.000 | 53.000 |
(71.000) | (61.000) | (62.000) | |
政策实施后After policy implementation | |||
[1,3] | 220.000*** | 140.000*** | 110.000* |
(71.000) | (53.000) | (54.000) | |
[4,6] | 240.000*** | 140.000** | 87.000 |
(71.000) | (54.000) | (55.000) | |
[7,9] | 260.000*** | 160.000* | 100.000 |
(71.000) | (81.000) | (83.000) | |
Inv | — | -0.262* | -0.078 |
(0.137) | (0.143) | ||
Urb | — | 110.000 | 390.000** |
(130.000) | (160.000) | ||
Inc | — | -0.370 (0.194) | -0.648 (0.203) |
Per | — | 5 700.000*** | 4 700.000*** |
(510.000) | (540.000) | ||
Lan | — | 0.062 | -0.220 |
(0.150) | (0.159) | ||
Emp | — | -0.839 (0.487) | -0.691 (0.343) |
Disa | — | -1.761 | -2.042 |
(1.226) | (1.239) | ||
常数项 | -220.000*** | -270.00*** | 280.000 |
Constant | (57.000) | (100.000) | (400.000) |
变量 Variable | 第1组 Group 1 | 第2组 Group 2 | 第3组 Group 3 | 第4组 Group 4 |
---|---|---|---|---|
Ti,t*di,t | -2.240 (33.600) | -36.000 (44.100) | 86.500 (54.000) | -156.000*** (49.500) |
di,t | 155.000*** (28.400) | 160.000*** (27.500) | 154.000*** (26.300) | 302.000*** (51.400) |
Ti,t | 33.600* (20.000) | 38.600* (22.900) | -6.370 (29.520) | 120.000*** (23.500) |
Inv | -0.046 (0.107) | -0.047 (0.107) | -0.014 (0.115) | -0.050 (0.115) |
Urb | -219.000** (93.700) | -237.000** (92.000) | -253.000*** (89.400) | -250.000*** (91.400) |
Inc | -0.030*** (0.006) | 0.030*** (0.006) | 0.029*** (0.006) | 0.030*** (0.006) |
Per | 2 940.000*** (365.000) | 2 960.000*** (363.000) | 2 860.000*** (384.000) | 2 950.000*** (397.000) |
Lan | -0.016* (0.009) | -0.016* (0.009) | -0.016 (0.010) | -0.017* (0.009) |
Emp | 1.091*** (0.195) | 1.034*** (0.178) | 1.023*** (0.177) | 1.069*** (0.177) |
Disa | 1.532 (0.660)** | 1.552** (0.662) | 1.393* (0.737) | 1.476 (0.641) |
常数项 Constant | -124.000*** (38.400) | -113.000*** (34.300) | -94.100*** (34.600) | -218.000 (40.300) |
表6 准实验组的双重差分回归结果
Table 6 Double difference regression results of experimental group
变量 Variable | 第1组 Group 1 | 第2组 Group 2 | 第3组 Group 3 | 第4组 Group 4 |
---|---|---|---|---|
Ti,t*di,t | -2.240 (33.600) | -36.000 (44.100) | 86.500 (54.000) | -156.000*** (49.500) |
di,t | 155.000*** (28.400) | 160.000*** (27.500) | 154.000*** (26.300) | 302.000*** (51.400) |
Ti,t | 33.600* (20.000) | 38.600* (22.900) | -6.370 (29.520) | 120.000*** (23.500) |
Inv | -0.046 (0.107) | -0.047 (0.107) | -0.014 (0.115) | -0.050 (0.115) |
Urb | -219.000** (93.700) | -237.000** (92.000) | -253.000*** (89.400) | -250.000*** (91.400) |
Inc | -0.030*** (0.006) | 0.030*** (0.006) | 0.029*** (0.006) | 0.030*** (0.006) |
Per | 2 940.000*** (365.000) | 2 960.000*** (363.000) | 2 860.000*** (384.000) | 2 950.000*** (397.000) |
Lan | -0.016* (0.009) | -0.016* (0.009) | -0.016 (0.010) | -0.017* (0.009) |
Emp | 1.091*** (0.195) | 1.034*** (0.178) | 1.023*** (0.177) | 1.069*** (0.177) |
Disa | 1.532 (0.660)** | 1.552** (0.662) | 1.393* (0.737) | 1.476 (0.641) |
常数项 Constant | -124.000*** (38.400) | -113.000*** (34.300) | -94.100*** (34.600) | -218.000 (40.300) |
变量 Variable | R1 | R2 | R3 |
---|---|---|---|
Ti,t*di,t | -68.825*** (7.412) | -62.278*** (8.964) | -75.636*** (9.803) |
di,t | 80.899*** (6.411) | 70.190*** (8.500) | 85.800*** (9.540) |
Ti,t | -42.976*** (2.716) | -43.485*** (6.316) | -57.195*** (7.051) |
Inv | — | 0.000*** (0.000) | 0.000*** (0.000) |
Urb | — | -102.048*** (24.321) | -126.831*** (32.618) |
Inc | — | 0.002 (0.001) | 0.000 (0.002) |
Per | — | 224.073** (92.827) | 442.787*** (111.757) |
Lan | — | -0.008** (0.003) | -0.005* (0.003) |
Emp | — | -0.281*** (0.049) | -0.297*** (0.056) |
Disa | — | <0.001*** (<0.001) | <0.001*** (<0.001) |
常数项 Constant | 50.813*** (2.390) | 95.724*** (11.090) | 106.016*** (13.488) |
表7 考虑农林牧渔业总产值的双重差分回归结果
Table 7 Double difference estimation result with consideration of gross output of agriculture, forestry, animal husbandry and fishery
变量 Variable | R1 | R2 | R3 |
---|---|---|---|
Ti,t*di,t | -68.825*** (7.412) | -62.278*** (8.964) | -75.636*** (9.803) |
di,t | 80.899*** (6.411) | 70.190*** (8.500) | 85.800*** (9.540) |
Ti,t | -42.976*** (2.716) | -43.485*** (6.316) | -57.195*** (7.051) |
Inv | — | 0.000*** (0.000) | 0.000*** (0.000) |
Urb | — | -102.048*** (24.321) | -126.831*** (32.618) |
Inc | — | 0.002 (0.001) | 0.000 (0.002) |
Per | — | 224.073** (92.827) | 442.787*** (111.757) |
Lan | — | -0.008** (0.003) | -0.005* (0.003) |
Emp | — | -0.281*** (0.049) | -0.297*** (0.056) |
Disa | — | <0.001*** (<0.001) | <0.001*** (<0.001) |
常数项 Constant | 50.813*** (2.390) | 95.724*** (11.090) | 106.016*** (13.488) |
[1] | 秦涛, 田治威, 潘焕学. 我国森林保险保费补贴政策执行效果、存在的主要问题与建议[J]. 经济纵横, 2017(1):105-110. |
QIN T, TIAN Z W, PAN H X. Analysis on the implementation effect and main issue of forest insurance premium subsidies policy of China[J]. Economic Review, 2017(1):105-110.(in Chinese with English abstract) | |
[2] | 富丽莎, 秦涛, 潘焕学. 森林保险制度体系重塑与运行机制优化[J]. 浙江农业学报, 2020,32(6):1112-1122. |
FU L S, QIN T, PAN H X. Remolding of system and optimizing of operational mechanism for forest insurance[J]. Acta Agriculturae Zhejiangensis, 2020,32(6):1112-1122.(in Chinese with English abstract) | |
[3] |
QIN T, DENG J, PAN H X, et al. The effect of coverage level and premium subsidy on farmers’ participation in forest insurance: an empirical analysis of forest owners in Hunan Province of China[J]. Journal of Sustainable Forestry, 2016,35(3):191-204.
DOI URL |
[4] | SIHEM E. Economic and socio-cultural determinants of agricultural insurance demand across countries[J]. Journal of the Saudi Society of Agricultural Sciences, 2019,18(2):177-187. |
[5] | 邓晶, 陈启博. 基于DEA模型的我国森林保险保费补贴效率研究[J]. 林业经济, 2018,40(10):88-95. |
DENG J, CHEN Q B. Study on the efficiency of forest insurance premium subsidies in China based on DEA model[J]. Forestry Economics, 2018,40(10):88-95.(in Chinese with English abstract) | |
[6] | 何玥. 中国森林保险制度效率及影响因素研究[D]. 北京: 北京林业大学, 2015. |
HE Y. Study on the efficiency and influencing factors of China’s forest insurance system[D]. Beijing: Beijing Forestry University, 2015. (in Chinese with English abstract) | |
[7] | 郑彬, 高岚. 森林保险保费补贴效率测评: 基于SE-DEA模型与Malmquist指数[J]. 资源开发与市场, 2019,35(1):7-12. |
ZHENG B, GAO L. Evaluation of efficiency of forest insurance premium subsidies: based on SE-DEA model and malmquist index[J]. Resource Development & Market, 2019,35(1):7-12.(in Chinese with English abstract) | |
[8] | 顾雪松, 谢妍, 秦涛. 森林保险保费补贴的“倒U型”产出效应: 基于我国省际非平衡面板数据的实证研究[J]. 农村经济, 2016(6):95-100. |
GU X S, XIE Y, QIN T. “Inverted U-shaped” output effect of forest insurance premium subsidy: an empirical study based on China’s inter-provincial non-equilibrium panel data[J]. Rural Economy, 2016(6):95-100. (in Chinese) | |
[9] | MÂRZA B, ANGELESCU C, TINDECHE C. Agricultural insurances and food security: the new climate change challenges[J]. Procedia Economics and Finance, 2015,27:594-599. |
[10] | LUSK J L. Distributional effects of crop insurance subsidies[J]. Applied Economic Perspectives and Policy, 2017,39(1):1-15. |
[11] | 肖攀, 刘春晖, 苏静. 粮食安全视角下农业保险财政补贴政策效果评估[J]. 统计与决策, 2019(23):157-160. |
XIAO P, LIU C H, SU J. Effect assessment of agricultural insurance financial subsidy policy from the perspective of food security[J]. Statistics & Decision, 2019(23):157-160. (in Chinese) | |
[12] | 张伟, 易沛, 徐静, 等. 政策性农业保险对粮食产出的激励效应[J]. 保险研究, 2019(1):32-44. |
ZHANG W, YI P, XU J, et al. Incentivizing effect of policy agricultural insurance on grain output[J]. Insurance Studies, 2019(1):32-44. (in Chinese with English abstract) | |
[13] | MÜLLER B, JOHNSON L, KREUER D. Maladaptive outcomes of climate insurance in agriculture[J]. Global Environmental Change, 2017,46:23-33. |
[14] | 张哲晰, 穆月英, 侯玲玲. 参加农业保险能优化要素配置吗?: 农户投保行为内生化的生产效应分析[J]. 中国农村经济, 2018(10):53-70. |
ZHANG Z X, MU Y Y, HOU L L. Does participation in agricultural insurance optimize factor allocation?: an analysis of endogenous farmers’ insurance decision-making and its effect on production[J]. Chinese Rural Economy, 2018(10):53-70.(in Chinese with English abstract) | |
[15] | 袁辉, 谭迪. 政策性农业保险对农业产出的影响效应分析: 以湖北省为例[J]. 农村经济, 2017(9):94-100. |
YUAN H, TAN D. Analysis of the impact of policy-based agricultural insurance on agricultural output: a case study of Hubei Province[J]. Rural Economy, 2017(9):94-100. (in Chinese) | |
[16] | 张卓, 李秉坤, 尹航. 我国政策性农业保险对农业产出规模的挤出效应: 基于干预-控制框架DID模型的分析[J]. 商业研究, 2019(8):110-117. |
ZHANG Z, LI B K, YIN H. The crowding out effect of policy agricultural insurance on agricultural output scale in China: an analysis based on DID model of intervention-control framework[J]. Commercial Research, 2019(8):110-117.(in Chinese with English abstract) | |
[17] | 余洋, 董志华. 政治均衡视阈中的农业保险保费补贴政策: 比较优势与险种选择[J]. 宏观经济研究, 2016(4):12-20. |
YU Y, DONG Z H. Agricultural insurance premium subsidy policy from the perspective of political equilibrium: comparative advantage and insurance type selection[J]. Scientific Management Research, 2016 (4):12-20. (in Chinese) | |
[18] | 邵全权, 郭梦莹. 发展农业保险能促进农业经济增长吗?[J]. 经济学动态, 2020(2):90-102. |
SHAO Q Q, GUO M Y. Can agricultural insurance promote agricultural economic growth?[J]. Economic Perspectives, 2020(2):90-102.(in Chinese with English abstract) | |
[19] | 陈林, 伍海军. 国内双重差分法的研究现状与潜在问题[J]. 数量经济技术经济研究, 2015,32(7):133-148. |
CHEN L, WU H J. Research status and potential problems of differences-in-differences method in China[J]. The Journal of Quantitative & Technical Economics, 2015,32(7):133-148.(in Chinese with English abstract) | |
[20] | 马九杰, 崔恒瑜, 吴本健. 政策性农业保险推广对农民收入的增进效应与作用路径解析: 对渐进性试点的准自然实验研究[J]. 保险研究, 2020(2):3-18. |
MA J J, CUI H Y, WU B J. Analysis of the effect and mechanism of policy-oriented agricultural insurance’s promotion on farmers’ income: a quasi-natural experimental research on progressive pilots[J]. Insurance Studies, 2020(2):3-18. (in Chinese with English abstract) |
[1] | 富丽莎, 秦涛, 潘焕学. 森林保险制度体系重塑与运行机制优化[J]. 浙江农业学报, 2020, 32(6): 1112-1122. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1898
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 774
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||