浙江农业学报 ›› 2021, Vol. 33 ›› Issue (11): 2174-2184.DOI: 10.3969/j.issn.1004-1524.2021.11.20
陈建能a,b(), 周赟a, 贾江鸣a,b,*(
), 陈天龙a, 蔡双雷a, 喻陈楠a
收稿日期:
2021-01-19
出版日期:
2021-11-25
发布日期:
2021-11-26
通讯作者:
贾江鸣
作者简介:
*贾江鸣,E-mail: jiannengchen@zstu.edu.cn基金资助:
CHEN Jiannenga,b(), ZHOU Yuna, JIA Jiangminga,b,*(
), CHEN Tianlonga, CAI Shuangleia, YU Chennana
Received:
2021-01-19
Online:
2021-11-25
Published:
2021-11-26
Contact:
JIA Jiangming
摘要:
为了实现切须后大蒜的精准切根、减少大蒜浪费,在分析直径范围φ42~φ56 mm大蒜根盘特征得出理想切根轨迹的基础上,提出了一种基于大蒜根盘特征的精确切根机构,并建立了该机构运动学分析模型,编写了切根机构分析软件,分析了若干关键参数对切根效果的影响。以理想根盘特征为目标,建立了切根机构参数优化目标函数,优化得到了满足切根轨迹要求的机构参数。根据最佳参数进行切根机构与切根装置整机的结构设计,完成了大蒜切根装置整机的研制和试验,试验结果和理想轨迹基本一致,验证了大蒜切根机构设计的合理性和优化的正确性。切根试验结果表明:在输送线速度为0.15 m·s-1、切根电机转速为65 r·min-1时,大蒜切根成功率达86%,大蒜损失率为8.01%,切根效率可达100头·min-1,满足市场上大蒜的加工要求。
中图分类号:
陈建能, 周赟, 贾江鸣, 陈天龙, 蔡双雷, 喻陈楠. 基于大蒜根盘特征的精确切根机构优化设计[J]. 浙江农业学报, 2021, 33(11): 2174-2184.
CHEN Jianneng, ZHOU Yun, JIA Jiangming, CHEN Tianlong, CAI Shuanglei, YU Chennan. Optimum design of precise root cutting mechanism based on characteristics of garlic root disk[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2174-2184.
图1 大蒜尺寸示意图 d1,大蒜直径;d2,根盘直径;l1,大蒜高度;l2,径面高度;l3,根盘高度。
Fig.1 Garlic size diagram d1, Garlic diameter; d2, Root diameter; l1, Garlic height; l2, Diameter height; l3, Root height.
规格 Specifications | 大蒜直径 Garlic diameter/mm | 大蒜高度 Garlic height/mm | 径面高度 Diameter height/mm | 根盘高度 Root height/mm | 根盘直径 Root diameter/mm |
---|---|---|---|---|---|
1 | 42.3 | 33.75 | 13.27 | 4.21 | 12.12 |
2 | 46.2 | 34.16 | 11.94 | 4.55 | 14.55 |
3 | 51.6 | 36.35 | 13.28 | 4.68 | 16.46 |
4 | 55.8 | 37.93 | 13.16 | 4.86 | 18.23 |
表1 大蒜尺寸统计分析结果
Table 1 Statistical results of garlic size
规格 Specifications | 大蒜直径 Garlic diameter/mm | 大蒜高度 Garlic height/mm | 径面高度 Diameter height/mm | 根盘高度 Root height/mm | 根盘直径 Root diameter/mm |
---|---|---|---|---|---|
1 | 42.3 | 33.75 | 13.27 | 4.21 | 12.12 |
2 | 46.2 | 34.16 | 11.94 | 4.55 | 14.55 |
3 | 51.6 | 36.35 | 13.28 | 4.68 | 16.46 |
4 | 55.8 | 37.93 | 13.16 | 4.86 | 18.23 |
图3 大蒜切根装置设计简图 1,放置板前进方向;2,上料位置;3,下压位置;4,切根位置;5,输送线电机。
Fig.3 Design drawing of garlic root cutting machine 1, Forward direction of placing plate; 2, Feeding position; 3, Pressing position; 4, Root cutting position; 5, Conveying line motor.
图4 大蒜切根机构简图 1,曲柄;2,连杆;3,摇杆;4,机架;5,刀具;6,第一齿轮;7,第二齿轮;8,根盘;9,切割轨迹。
Fig.4 Structural diagram of garlic root cutting mechanism 1, Crank; 2, Connecting rod; 3, Rocker; 4, Frame; 5, Tool; 6, First gear; 7, Second gear; 8, Root plate; 9, Cutting track.
图5 大蒜切根机构仿真分析软件 1,菜单栏;2,图像显示区;3,初始参数输入区;4,优化参数设置区;5,优化控制区;6,优化结果输出区。
Fig.5 Software interface for simulation analysis of garlic root cutting mechanism 1, Menu bar; 2, Image display area; 3, Initial parameter input area; 4, Optimization parameter setting area; 5, Control area of optimization; 6, Output area of optimized results.
图6 L1与切根轨迹之间的关系 由于在不同L1长度下,对应的3条切根轨迹重叠,不利于观察,因此使刀具轨迹整体在实际切根轨迹的基础上沿着垂直方向做了偏移。
Fig.6 Relationship between L1 and root cutting track Since the corresponding three root cutting tracks overlapped at different L1 lengths, it was not conducive to observation, so the overall tool path was offset along the vertical direction on the basis of the actual root cutting tracks.
图7 L2与切根轨迹之间的关系 由于在不同L2长度下,对应的3条切根轨迹重叠,不利于观察,因此使刀具轨迹整体在实际切根轨迹的基础上沿着垂直方向做了偏移。
Fig.7 Relationship between L2 and root cutting track Since the corresponding three root cutting tracks overlapped at different L2 lengths, it was not conducive to observation, so the tool path as a whole was offset along the vertical direction on the basis of the actual root cutting track.
图8 L3与切根轨迹之间的关系 由于在不同L3长度下,对应的3条切根轨迹重叠,不利于观察,因此使刀具轨迹整体在实际切根轨迹的基础上沿着垂直方向做了偏移。
Fig.8 Relationship between L3 and root cutting track Since the corresponding three root cutting tracks overlapped at different L3 lengths, it was not conducive to observation, so the tool path as a whole was offset along the vertical direction on the basis of the actual root cutting track.
图9 L5与切根轨迹之间的关系 A,切根轨迹;B,根盘与切根轨迹的相对位置。
Fig.9 Relationship between L5 and root cutting track A, Root cutting locus; B, Relative position of the root disk and the cutting root locus.
图10 D与切根轨迹之间的关系 A,切根轨迹;B,根盘与切根轨迹的相对位置。由于在不同D长度下,切根轨迹重叠,不利于观察,因此使刀具轨迹整体在实际切根轨迹的基础上沿着垂直方向做了偏移。
Fig.10 Relationship between D and root cutting track A, Root cutting locus; B, Relative position of the root disk and the cutting root locus. Because the root cutting track overlapped at different D lengths, it was not conducive to observation, so the tool path as a whole was offset along the vertical direction based on the actual root cutting track.
图11 大蒜横截面分析图 1,切根轨迹;2,大蒜根盘;3,浪费的蒜肉。图中K点为铰链点C和铰链点D连线的中点。
Fig.11 Analysis diagram of garlic cross section 1, Root cutting track; 2, Garlic root disk; 3, Wasted garlic meat. Point K in the figure was the midpoint of the connection between hinge point C and hinge point D.
图14 切刀连杆组件 1,摇杆轴;2,刀片;3,齿轮;4,驱动轴;5,驱动轴固定座;6,摇杆;7,曲柄;8,连杆。
Fig.14 Cutter connecting rod assembly 1, Rocker shaft; 2, Blade; 3, Gear; 4, Drive shaft; 5, Drive shaft fixing seat; 6, Rocker; 7, Crank; 8, Connecting rod.
图16 大蒜切根装置整机 1,大蒜输送机构;2,大蒜压紧机构;3,大蒜切根机构;4,大蒜放置板组件;5,压紧气缸;6,下压组件;7,输送线电机;8,切根电机。
Fig.16 Garlic root cutting machine 1, Garlic conveying mechanism; 2, Garlic pressing mechanism; 3, Garlic root cutting mechanism; 4, Garlic placement plate assembly; 5,Compression cylinder; 6, Pressing assembly; 7, Conveying line motor; 8, Root cutting motor.
图17 接近开关位置示意图 1,压紧机构;2,切根刀片;3,切根摇杆;4,切根连杆;5,接近开关1;6,接近开关2。
Fig.17 Diagram of proximity switch position 1, Compaction mechanism; 2, Root cutting blade; 3, Root cutting rocker; 4, Root cutting connecting rod; 5, Proximity switch 1; 6,Proximity switch 2.
图18 大蒜切根机整机 1,大蒜放置板组件;2,输送线链轮;3,输送线张紧链轮;4,输送线电机;5,压紧气缸;6,下压组件;7,控制箱;8,切根位置;9,切根机构;10,切根电机。
Fig.18 Whole machine of garlic root cutting 1, Garlic placement plate assembly; 2, Conveyor line sprocket; 3, Conveyor line tensioning sprocket; 4, Conveyor line motor; 5, Pressing cylinder; 6, Lower pressure assembly; 7, Control box; 8, Root cutting position; 9, Root cutting mechanism; 10, Root cutting machine.
编号 No. | 输送线速度 Conveyor line speed/ (m·s-1) | 切根机构速度 Root cutting mechanism speed/(r·min-1) | 切根成功率 Root cutting success rate/% | 蒜肉损失率 Garlic loss rate/% | 整机切根效率/(头·min-1) Cut root effectiveness of whole machine/(head·min-1) |
---|---|---|---|---|---|
1 | 0.10 | 55 | 87.0 | 8.19 | 67 |
2 | 0.10 | 65 | 85.5 | 8.03 | 66 |
3 | 0.10 | 75 | 82.0 | 9.30 | 63 |
4 | 0.15 | 55 | 86.0 | 8.00 | 100 |
5 | 0.15 | 65 | 86.0 | 8.01 | 100 |
6 | 0.15 | 75 | 84.0 | 9.20 | 98 |
7 | 0.20 | 55 | 68.0 | 13.92 | 105 |
8 | 0.20 | 65 | 67.0 | 16.36 | 103 |
9 | 0.20 | 75 | 62.0 | 18.23 | 96 |
表2 大蒜切根试验结果
Table 2 Result of garlic root cutting experiment
编号 No. | 输送线速度 Conveyor line speed/ (m·s-1) | 切根机构速度 Root cutting mechanism speed/(r·min-1) | 切根成功率 Root cutting success rate/% | 蒜肉损失率 Garlic loss rate/% | 整机切根效率/(头·min-1) Cut root effectiveness of whole machine/(head·min-1) |
---|---|---|---|---|---|
1 | 0.10 | 55 | 87.0 | 8.19 | 67 |
2 | 0.10 | 65 | 85.5 | 8.03 | 66 |
3 | 0.10 | 75 | 82.0 | 9.30 | 63 |
4 | 0.15 | 55 | 86.0 | 8.00 | 100 |
5 | 0.15 | 65 | 86.0 | 8.01 | 100 |
6 | 0.15 | 75 | 84.0 | 9.20 | 98 |
7 | 0.20 | 55 | 68.0 | 13.92 | 105 |
8 | 0.20 | 65 | 67.0 | 16.36 | 103 |
9 | 0.20 | 75 | 62.0 | 18.23 | 96 |
[1] | 石瑜, 王敬民, 李敬华, 等. 我国大蒜种质资源研究进展[J]. 农业科技通讯, 2018(10):167-169. |
SHI Y, WANG J M, LI J H, et al. Research progress of garlic germplasm resources in China[J]. Agricultural Science and Technology Communication, 2018(10):167-169.(in Chinese) | |
[2] | 杨宾宾, 宗义湘, 赵邦宏. 中国大蒜产业国际竞争力测算及影响因素分析[J]. 农业展望, 2019, 15(10):113-117. |
YANG B B, ZONG Y X, ZHAO B H. Measurement of the international competitiveness of China’s garlic industry and its influencing factors[J]. Agricultural Outlook, 2019, 15(10):113-117.(in Chinese with English abstract) | |
[3] | 肖小勇, 李崇光. 我国大蒜出口的“大国效应”研究[J]. 国际贸易问题, 2013(8):61-71. |
XIAO X Y, LI C G. Study of “power effect” in China’s garlic exports[J]. Journal of International Trade, 2013(8):61-71.(in Chinese with English abstract) | |
[4] | 王慧全. 中国大蒜贸易和生产加工情况分析[J]. 中国果菜, 2013, 33(2):46-49. |
WANG H Q. Analysis of garlic trade and production and processing in China[J]. China Fruit Vegetable, 2013, 33(2):46-49.(in Chinese) | |
[5] | 杨柯, 胡志超, 彭宝良, 等. 大蒜机械化切须技术探析[J]. 中国农机化学报, 2015, 36(4):106-110. |
YANG K, HU Z C, PENG B L, et al. Analysis of mechanized garlic roots removal technology[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(4):106-110.(in Chinese with English abstract) | |
[6] | RANI V, SRIVASTAVA A P. Design and development of onion detopper[J]. Agricultural Mechanization in Asia Africa and Latin America, 2006, 43(3):69-73. |
[7] | FRANKSTEIN B. Mobile root crop harvesting apparatus: US4967848[P]. 1990-11-06. |
[8] | 窦志豪. 一种新型大蒜凹式切根机: CN110447926A[P]. 2019-11-15. |
[9] | 李春雷. 一种大蒜切苗去根机: CN209171399U[P]. 2019-07-30. |
[10] | 张会娟, 胡志超, 吴峰, 等. 我国大蒜机械化种植与收获概况[J]. 江苏农业科学, 2010, 38(3):460-461. |
ZHANG H J, HU Z C, WU F, et al. Planting mechanization and harvesting about garlic in China[J]. Jiangsu Agricultural Sciences, 2010, 38(3):460-461.(in Chinese) | |
[11] | 许栋, 侯升光. 成武县大蒜机械化收获的现状及对策[J]. 山东农机化, 2015(1):23-24. |
XU D, HOU S G. Status and countermeasures of garlic mechanized harvesting in Chengwu County[J]. Shandong Agricultural Mechanization, 2015(1):23-24.(in Chinese) | |
[12] | 赵岩. 介绍几款大蒜加工机械[J]. 农业知识, 2010(16):32-33. |
ZHAO Y. Several garlic processing machines[J]. Agricultural Knowledge, 2010(16):32-33.(in Chinese) | |
[13] | 杨柯, 胡志超, 彭宝良, 等. 大蒜机械切须技术研究及试验[J]. 中国农机化学报, 2015, 36(3):153-159. |
YANG K, HU Z C, PENG B L, et al. Research and test of garlic mechanical cutting roots technology[J]. Journal of Chinese Agricultural Mechanization, 2015, 36(3):153-159.(in Chinese with English abstract) | |
[14] | 陈建能, 苏艺, 蔡双雷, 等. 一种仿形式大蒜切根机及其切根方法中国: 201910039149.1[P]. 2019-05-03. |
[15] | 王毅, 许洪斌, 张茂, 等. 仿蛇嘴咬合式柑橘采摘末端执行器设计与实验[J]. 农业机械学报, 2018, 49(10):54-64. |
WANG Y, XU H B, ZHANG M, et al. Design and experiment of bite-model end-effector for Citrus harvesting by simulating with mouth of snake[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10):54-64.(in Chinese with English abstract) | |
[16] | 赵浩东. 基于ANSYS的曲柄摇杆机构的仿真分析及优化设计[J]. 机电工程技术, 2020, 49(2):159-161. |
ZHAO H D. Simulation analysis and optimization design of crank-rocker mechanism based on ANSYS[J]. Mechanical & Electrical Engineering Technology, 2020, 49(2):159-161.(in Chinese with English abstract) | |
[17] | 刘震宇. U型钢板桩锁口抗弯刚度折减效应研究[J]. 中国水运(下半月), 2016, 16(3):304-306. |
LIU Z Y. Study on flexural stiffness reduction effect of U-shaped steel sheet pile lock[J]. China Water Transport, 2016, 16(3):304-306.(in Chinese) | |
[18] | 周竞洋, 夏志成, 张建亮, 等. 钢板夹钢管组合板抗弯吸能效应分析[J]. 防护工程, 2017, 39(5):23-29. |
ZHOU J Y, XIA Z C, ZHANG J L, et al. Analysis of bending energy absorption effect of steel tube sandwich panel[J]. Protective Engineering, 2017, 39(5):23-29.(in Chinese) | |
[19] | 龙志军, 裴毅, 孙松林, 等. 平面曲柄摇杆机构的计算机辅助动力学分析[J]. 农机化研究, 2004, 26(5):79-81. |
LONG Z J, PEI Y, SUN S L, et al. Computer-aided dynamics analysis of the planar crank joystick mechanism[J]. Journal of Agricultural Mechanization Research, 2004, 26(5):79-81.(in Chinese with English abstract) | |
[20] | 崇峻, 张光辉, 崇璐. 一种大蒜凹式切根机: CN106036957B[P]. 2019-04-16. |
[21] | 董大义, 梁国峰, 董玉贵, 等. 大蒜切根机: ZL201020249223.9[P]. 2011-02-09. |
[1] | 齐振宇, 蔡溧聪, 胡卫珍, 蔡盼, 张龙平, 任艳云, 周艳虹. 水肥一体化模式中化肥减施与不同基追肥比例对大蒜产量和品质的影响[J]. 浙江农业学报, 2021, 33(8): 1409-1415. |
[2] | 刘新雨, 田洁. 大蒜转录组简单重复序列标记分析与分子标记开发[J]. 浙江农业学报, 2020, 32(9): 1615-1625. |
[3] | 林静, 张顺, 蔡挺, 曹慧, 刘鹏, 荀凯, 乐元洁. QuEChERS-超高效液相色谱-串联质谱技术同时测定大蒜中10种农药残留[J]. 浙江农业学报, 2018, 30(1): 159-166. |
[4] | 刘国伟, 任艳云, 高园园, 张龙平, 刘艳芝, 徐祥文, 高发瑞, 马井玉, 张连秋. 大蒜品种资源生育和产量性状主成分聚类分析及评价[J]. 浙江农业学报, 2016, 28(9): 1508-1513. |
[5] | 王丽慧1,2,方云花1,2,刘青元1,3,李莉1,2,*. 大蒜可溶性糖积累与分配特性研究[J]. 浙江农业学报, 2014, 26(4): 933-. |
[6] | 赵桐;李长红;周前进;*;陈先锋;陈炯;陈剑平. 大蒜X病毒逆转录环介导等温扩增检测方法的建立[J]. , 2013, 25(6): 0-1331. |
[7] | 邵金华;李涛;杨佳. 微波辅助大蒜多糖的提取及其抗氧化活性的研究[J]. , 2013, 25(4): 0-872. |
[8] | 徐丽红;王建清;张巧艳;李晓敏;邱承海;袁利文. HPLC法检测保健食品中大蒜素的含量[J]. , 2012, 24(4): 0-717. |
[9] | 杨清明;李娟玲*;何瑞银. 基于图像处理的大蒜蒜瓣朝向识别[J]. , 2010, 22(1): 0-123. |
[10] | 金建忠. 大蒜精油化学成分研究[J]. , 2006, 18(6): 0-465. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1121
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 857
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||