浙江农业学报 ›› 2022, Vol. 34 ›› Issue (1): 112-119.DOI: 10.3969/j.issn.1004-1524.2022.01.14
收稿日期:
2020-09-07
出版日期:
2022-01-25
发布日期:
2022-02-05
通讯作者:
宋鹏
作者简介:
* 宋鹏,E-mail: songpengyg@126.com
FENG Wei1(), LI Pengpeng2, SONG Peng1,*(
)
Received:
2020-09-07
Online:
2022-01-25
Published:
2022-02-05
Contact:
SONG Peng
摘要:
利用毕赤酵母表达系统首次克隆表达了一个油菜籽来源的Kunitz蛋白酶抑制剂基因(RTI;rti),分离纯化后对该抑制剂进行了理化特征分析。结果显示:在摇瓶发酵水平,重组RTI诱导表达水平达到628 mg·L-1,抑制剂比活性达到69.6 TIU·mg-1蛋白;重组RTI在30~90℃可保持70%以上抑制活性,在pH 2.0~11.0 保持80%以上抑制活性;金属离子Cu2+和Co2+,有机试剂甲醇、乙醇、丙酮和氯仿对其有抑制作用;重组RTI以非竞争性抑制方式与胰蛋白酶作用,对胰蛋白酶具有很强的、专一性抑制作用,属于典型的植物Kunitz型胰蛋白酶抑制剂。结合其良好的理化特性,重组RTI具有开发为抗虫蛋白的潜力。
中图分类号:
冯玮, 李朋朋, 宋鹏. 甘蓝型油菜Kunitz蛋白酶抑制剂的异源表达与理化特征分析[J]. 浙江农业学报, 2022, 34(1): 112-119.
FENG Wei, LI Pengpeng, SONG Peng. Heterologous expression and physicochemical characterization of Brassica napus Kunitz protease inhibitor[J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 112-119.
图1 不同来源Kunitz蛋白酶抑制剂进化树 线段长度表示MEGA 5.0 计算的遗传距离;分支节点上的数字表示bootstrap百分比,小于50%数值未显示;选择建立进化树的各Kunitz蛋白酶抑制剂都已被分离鉴定,分别用各自的GenBank登录号或UniProt识别号表示;括号中标注的是Kunitz蛋白酶抑制剂的物种来源;粗体标注的是本研究油菜籽Kunitz蛋白酶抑制剂。
Fig.1 Phylogenetic tree describing the genetic distances among Kunitz protease inhibitors from different sources The line length represented the genetic distance calculated by MEGA 5.0; the numbers at nodes representedthe bootstrap values (%), values lower than 50 were not shown;all Kunitz protease inhibitors selected to establish the phylogenetic tree had been isolated and identified,each sequence was identified by its GenBank or UniProt accession number; the species source of Kunitz protease inhibitors were indicated in brackets; the Kunitz protease inhibitor from rapeseed (in this study) was labeled in bold.
纯化步骤 Purification procedures | 总蛋白 Total protein/mg | 抑制剂活性 Inhibitor activity/TIU | 抑制剂比活性 Specific activity of inhibitor/TIU·mg-1 | 得率 Yield/% | 纯化倍数 Purification fold |
---|---|---|---|---|---|
上清发酵液Supernatant | 71±2.6 a | 4938.7±204.8 a | 69.6±2.8 c | 100±3.4 a | 1.0±0.03 c |
透析、盐析Dialysis and salting out | 28±0.9 b | 3142.6±124.5 b | 112.2±5.7 b | 63.7±2.8 b | 1.6±0.05 b |
离子交换层析Ion exchangechromatography | 1.9±0.04 c | 2718.0±98.3 c | 1430.5±65.9 a | 55.0±1.9 c | 20.6±1.10 a |
表1 重组RTI的分离和纯化
Table 1 Isolation and purification of recombinant RTI
纯化步骤 Purification procedures | 总蛋白 Total protein/mg | 抑制剂活性 Inhibitor activity/TIU | 抑制剂比活性 Specific activity of inhibitor/TIU·mg-1 | 得率 Yield/% | 纯化倍数 Purification fold |
---|---|---|---|---|---|
上清发酵液Supernatant | 71±2.6 a | 4938.7±204.8 a | 69.6±2.8 c | 100±3.4 a | 1.0±0.03 c |
透析、盐析Dialysis and salting out | 28±0.9 b | 3142.6±124.5 b | 112.2±5.7 b | 63.7±2.8 b | 1.6±0.05 b |
离子交换层析Ion exchangechromatography | 1.9±0.04 c | 2718.0±98.3 c | 1430.5±65.9 a | 55.0±1.9 c | 20.6±1.10 a |
图2 SDS-PAGE分析RTI的纯化情况 M,蛋白分子量标准;1,上清液;2,透析、盐析后的RTI;3,离子交换层析后纯化后的RTI。
Fig.2 SDS-PAGE analysis of the purification of RTI M, Marker; 1, Supernatant; 2, RTI after dialysis and salting out; 3, Purified RTI after ion exchange chromatography.
图3 温度对RTI的影响 曲线图上没有相同小写字母表示各处理间差异显著(P<0.05)。下同。
Fig.3 Effect of temperature on RTI Different lowercase letters above the diagram represent statistically significant (P<0.05) differences among treatments. The same as below.
金属离子 Metal ions | 相对抑制活性 Relative inhibitory activity/% | 有机溶剂 Organic solvents | 相对抑制活性 Relative inhibitory activity/% |
---|---|---|---|
对照 Control | 100±5.2 a | 甲醇Methanol | 87.1±1.9 c |
K+ | 96.7±4.8 a | 乙醇Ethanol | 82.5±3.7 d |
Na+ | 97.2±5.3 a | 丙酮Acetone | 71.8±5.3 e |
Ca2+ | 95.8±6.4 a | 氯仿Chloroform | 62.3±2.4 f |
Zn2+ | 99.3±4.1 a | ||
Mg2+ | 97.9±5.1 a | ||
Cu2+ | 92.4±2.8 b | ||
Mn2+ | 96.1±6.2 a | ||
Fe2+ | 97.3±7.1 a | ||
Co2+ | 91.2±1.9 b |
表2 金属离子和有机溶剂对RTI活性的影响
Table 2 Effects of metal ions and organic solvents on the inhibitory activity of RTI
金属离子 Metal ions | 相对抑制活性 Relative inhibitory activity/% | 有机溶剂 Organic solvents | 相对抑制活性 Relative inhibitory activity/% |
---|---|---|---|
对照 Control | 100±5.2 a | 甲醇Methanol | 87.1±1.9 c |
K+ | 96.7±4.8 a | 乙醇Ethanol | 82.5±3.7 d |
Na+ | 97.2±5.3 a | 丙酮Acetone | 71.8±5.3 e |
Ca2+ | 95.8±6.4 a | 氯仿Chloroform | 62.3±2.4 f |
Zn2+ | 99.3±4.1 a | ||
Mg2+ | 97.9±5.1 a | ||
Cu2+ | 92.4±2.8 b | ||
Mn2+ | 96.1±6.2 a | ||
Fe2+ | 97.3±7.1 a | ||
Co2+ | 91.2±1.9 b |
图5 RTI抑制动力学曲线 a, b和c 分别添加0、3和6 μg·mL-1抑制剂。
Fig.5 Inhibition kinetic curve of RTI a, b and c was added with 0, 3, and 6 μg·mL-1 inhibitor, respectively.
蛋白酶Proteases | 抑制率Inhibition rate/% |
---|---|
胰蛋白酶Trypsin | 90.8±6.7 a |
胰凝乳蛋白酶Chymotrypsin | 38.6±2.1 b |
胃蛋白酶Pepsin | 0 |
木瓜蛋白酶Papain | 0 |
碱性蛋白酶Alkaline protease | 0 |
表3 RTI对不同蛋白酶的抑制作用
Table 3 Inhibitory effect of RTI on different proteases
蛋白酶Proteases | 抑制率Inhibition rate/% |
---|---|
胰蛋白酶Trypsin | 90.8±6.7 a |
胰凝乳蛋白酶Chymotrypsin | 38.6±2.1 b |
胃蛋白酶Pepsin | 0 |
木瓜蛋白酶Papain | 0 |
碱性蛋白酶Alkaline protease | 0 |
[1] | 廖海, 杜林方, 周嘉裕. 植物中蛋白类蛋白酶抑制剂的研究进展[J]. 天然产物研究与开发, 2002, 14(1): 80-84. |
LIAO H, DU L F, ZHOU J Y. Progress on the study of plant proteinase inhibitors[J]. Natural Product Research and Development, 2002, 14(1): 80-84.(in Chinese with English abstract) | |
[2] | CLEMENTE A, SONNANTE G, DOMONEY C. Bowman-Birk inhibitors from legumes and human gastrointestinal health: current status and perspectives[J]. Current Protein & Peptide Science, 2011, 12(5): 358-373. |
[3] | LUIZA VILELA OLIVA M, DA SILVA FERREIRA R, GASPERAZZO FERREIRA J, et al. Structural and functional properties of kunitz proteinase inhibitors from Leguminosae: a mini review[J]. Current Protein & Peptide Science, 2011, 12(5): 348-357. |
[4] | TURRA D, LORITO M. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance[J]. Current Protein & Peptide Science, 2011, 12(5): 374-385. |
[5] | VOLPICELLA M, LEONI C, COSTANZA A, et al. Cystatins, serpins and other families of protease inhibitors in plants[J]. Current Protein & Peptide Science, 2011, 12(5): 386-398. |
[6] | 张莉, 汪东风, 张宾, 等. 豆类植物蛋白酶抑制剂研究进展[J]. 大豆科学, 2006, 25(3): 314-319. |
ZHANG L, WANG D F, ZHANG B, et al. Advances in the study of protease inhibitors from leguminous plants[J]. Soybean Science, 2006, 25(3): 314-319.(in Chinese with English abstract) | |
[7] | 万善霞, 王婉琬, 滑静, 等. 胰蛋白酶抑制剂在不同领域的研究概况[J]. 北京农学院学报, 2003, 18(2): 152-155. |
WAN S X, WANG W W, HUA J, et al. Research status of trypsin inhibitor in different fields[J]. Journal of Beijing Agricultural College, 2003, 18(2): 152-155.(in Chinese with English abstract) | |
[8] |
SABOTIČ J, KOS J. Microbial and fungal protease inhibitors: current and potential applications[J]. Applied Microbiology and Biotechnology, 2012, 93(4): 1351-1375.
DOI URL |
[9] |
BENDRE A D, RAMASAMY S, SURESH C G. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights[J]. International Journal of Biological Macromolecules, 2018, 113: 933-943.
DOI URL |
[10] | 曲晓华, 浦冠勤. 蛋白酶抑制剂的研究与应用[J]. 蚕桑茶叶通讯, 2003(1): 19-22. |
QU X H, PU G Q. Study and application on the inhibitor of albumentenzyme[J]. Newsletter of Sericulture and Tea, 2003(1): 19-22.(in Chinese) | |
[11] |
SATTAR R, ALI S A, KAMAL M, et al. Molecular mechanism of enzyme inhibition: prediction of the three-dimensional structure of the dimeric trypsin inhibitor from Leucaena leucocephala by homology modelling[J]. Biochemical and Biophysical Research Communications, 2004, 314(3): 755-765.
DOI URL |
[12] |
KRAUCHENCO S, PANDO S C, MARANGONI S, et al. Crystal structure of the Kunitz (STI)-type inhibitor from Delonix regia seeds[J]. Biochemical and Biophysical Research Communications, 2003, 312(4): 1303-1308.
DOI URL |
[13] |
HERNÁNDEZ-NISTAL J, MARTÍN I, JIMÉNEZ T, et al. Two cell wall Kunitz trypsin inhibitors in chickpea during seed germination and seedling growth[J]. Plant Physiology and Biochemistry, 2009, 47(3): 181-187.
DOI URL |
[14] | 曾英, 桑玉英, 胡金勇, 等. 波叶青牛胆胰蛋白酶抑制剂的纯化及其性质研究[J]. 云南植物研究, 2002, 24(1): 103-108. |
ZENG Y, SANG Y Y, HU J Y, et al. Purification and characterization of a trypsin inhibitor from Tinospora crispa[J]. Acta Botanica Yunnanica, 2002, 24(1): 103-108.(in Chinese with English abstract) | |
[15] | 魏丽冬, 王庆民, 徐同文, 等. 刺桐胰蛋白酶抑制剂的高效表达、纯化、亲和介质的制备及其在r-PA纯化中的应用[J]. 药物生物技术, 2010, 17(4): 283-286. |
WEI L D, WANG Q M, XU T W, et al. Expression, purification of Erythrina trypsin inhibitor(ETI) and its preparation, and application of ETI affinity chromatography medium[J]. Pharmaceutical Biotechnology, 2010, 17(4): 283-286.(in Chinese with English abstract) | |
[16] | 王转花, 荆艳萍, 毛建锋. 苦荞胰蛋白酶抑制剂提取方法的研究[J]. 山西大学学报(自然科学版), 1999, 22(1): 3-5. |
WANG Z H, JING Y P, MAO J F. Study of extraction on trypsin inhibitor in Tartary buckwheat[J]. Journal of Shanxi University (Natural Science Edition), 1999, 22(1): 3-5.(in Chinese with English abstract) | |
[17] | 王竞. 白菜型油菜种子胰蛋白酶抑制剂的分离纯化与部分性质研究[D]. 成都: 四川大学, 2005. |
WANG J. Purification and partial characteristics of a trypsin inhibitor from Brassica campestris seeds[D]. Chengdu:Sichuan University, 2005. (in Chinese with English abstract) | |
[18] | 张燕青, 王鑫, 宋鹏, 等. 大豆胰蛋白酶抑制剂的异源表达与生化特性解析[J]. 食品工业科技, 2018, 39(24): 134-138. |
ZHANG Y Q, WANG X, SONG P, et al. Heterologous expression and biochemical characterization of soybean trypsin inhibitor[J]. Science and Technology of Food Industry, 2018, 39(24): 134-138.(in Chinese with English abstract) | |
[19] |
ROY D N, BHAT R V. Trypsin inhibitor content in some varieties of soya bean (Glycine max L.) and sunflower seeds (Helianthus annuus L.)[J]. Journal of the Science of Food and Agriculture, 1974, 25(7): 765-769.
DOI URL |
[20] |
TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
DOI URL |
[21] |
MACAULEY-PATRICK S, FAZENDA M L, MCNEIL B, et al. Heterologous protein production using the Pichia pastoris expression system[J]. Yeast (Chichester, England), 2005, 22(4): 249-270.
DOI URL |
[22] | 王荣春, 孙建华, 何述栋, 等. 胰蛋白酶抑制剂的结构与功能研究进展[J]. 食品科学, 2013, 34(9): 364-368. |
WANG R C, SUN J H, HE S D, et al. Recent advance in research on the structure and function of trypsin inhibitor[J]. Food Science, 2013, 34(9): 364-368.(in Chinese with English abstract) | |
[23] | 蒋明, 沈涛, 徐辉碧, 等. 金属离子对蛋白质的折叠、识别、自组装及功能的影响[J]. 化学进展, 2002, 14(4): 263-272. |
JIANG M, SHEN T, XU H B, et al. The influences of metal ions on protein folding, recognition, self-assembly and biological functions[J]. Progress in Chemistry, 2002, 14(4): 263-272.(in Chinese with English abstract) | |
[24] | 孙万儒. 有机溶剂在酶反应中的应用[J]. 微生物学通报, 1985, 12(2): 79-82. |
SUN W R. Application of organic solvents in enzyme reaction[J]. Microbiology China, 1985, 12(2): 79-82. (in Chinese) | |
[25] | 钱民协, 黄其辰, 贾一四, 等. 有机溶剂对伴刀豆球蛋白A的晶体结构的影响[J]. 中国科学(B辑), 1998, 28(4): 289-296. |
QIAN M X, HUANG Q C, JIA Y S, et al. Effect of organic solvents on the crystal structure of concanavalin A[J]. Science in China (Series B), 1998, 28(4): 289-296.(in Chinese) | |
[26] | 王旻. 即墨野生大豆(Glycine soja Sieb.et Zucc)的营养评价及其胰蛋白酶抑制剂的研究[D]. 青岛:中国海洋大学, 2013. |
WANG M. Study on the nutritional evaluation and trypsin inhibitor of wild soybean(Glycine soja Sieb.et Zucc) in Jimo[D]. Qingdao:Ocean University of China, 2013.(in Chinese with English abstract) | |
[27] | 谷春梅, 宋鑫秀, 赵琳琳, 等. Kunitz型大豆胰蛋白酶抑制剂(KTI)分离纯化方法的比较[J]. 食品科技, 2014, 39(6): 234-238. |
GU C M, SONG X X, ZHAO L L, et al. Comparison of separation and purification methods of soybean Kunitz-type trypsin inhibitor(KTI)[J]. Food Science and Technology, 2014, 39(6): 234-238.(in Chinese with English abstract) | |
[28] | 赵伟伟. 黑豆胰蛋白酶抑制剂的分离纯化及活性鉴定[D]. 太原:山西大学, 2016. |
ZHAO W W. Purification and bioactivities of trypsin inhibitor from black soybean[D]. Taiyuan: Shanxi University, 2016. (in Chinese with English abstract) | |
[29] |
MACEDO M L R, GARCIA V A, FREIRE M D G M, et al. Characterization of a Kunitz trypsin inhibitor with a single disulfide bridge from seeds of Inga laurina(SW.) Willd[J]. Phytochemistry, 2007, 68(8): 1104-1111.
DOI URL |
[30] |
DE MEDEIROS A F, DE SOUSA COSTA I, DE CARVALHO F M C, et al. Biochemical characterisation of a Kunitz-type inhibitor from Tamarindus indica L. seeds and its efficacy in reducing plasma leptin in an experimental model of obesity[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33(1): 334-348.
DOI URL |
[31] |
RAWLINGS N D, BARRETT A J, FINN R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors[J]. Nucleic Acids Research, 2016, 44(D1): D343-D350.
DOI URL |
[1] | 张高峰, 杨侃侃, 张谦, 王元红, 俞赵荣, 张学琪, 鲁智敏, 刘自敏, 李永东, 王勇. 羊口疮病毒安徽株023基因的原核表达与生物信息学分析[J]. 浙江农业学报, 2019, 31(1): 30-38. |
[2] | 汤先泽1,刘伟2,皮雄娥2,尹业师2,王欣2,刘新利1,*. 磷脂酰肌醇特异性磷脂酶C基因在乳酸乳球菌中的异源表达[J]. 浙江农业学报, 2016, 28(4): 640-. |
[3] | 刘大群;华颖. CO2胁迫对膜醭毕赤酵母细胞膜通透性的影响[J]. , 2014, 26(3): 0-786790. |
[4] | 赵立娜;崔言顺;任建亭;李建亮;黄兵;李玉峰;马秀丽;* . 基因C型鸭肝炎病毒VP1基因的克隆表达及其多克隆抗体的制备([J]. , 2011, 23(2): 0-262. |
[5] | 刘燕;庞安娜;韦强;鲍国连*;季权安;肖琛闻. Ⅰ型鸭肝炎病毒VP3基因的原核表达及其抗原性[J]. , 2011, 23(1): 66-69. |
[6] | 亓丽红;艾武;黄兵;刘涛;秦卓明;宋敏训*. 鸡传染性支气管炎病毒S1基因在毕赤酵母中的表达及其免疫学原性分析[J]. , 2010, 22(5): 585-589. |
[7] | 张存;叶伟成;王一成;袁秀芳;刘蔓雯;张燕. 猪α干扰素在毕赤酵母中的高效表达和纯化[J]. , 2010, 22(1): 0-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||