[1] |
王丽, 苏钛, 侯安国. 珠子参的化学成分及药理作用研究进展[J]. 中国中医基础医学杂志, 2020(7): 1037-1040.
|
|
WANG L, SU T, HOU A G. Research progress on chemical constituents and pharmacological effects of Panax japonicus[J]. Journal of Basic Chinese Medicine, 2020(7): 1037-1040. (in Chinese with English abstract)
|
[2] |
KOCHKIN D V, KACHALA V V, SHASHKOV A S, et al. Malonyl-ginsenoside content of a cell-suspension culture of Panax japonicus var. Repens[J]. Phytochemistry, 2013, 93: 18-26.
DOI
URL
|
[3] |
QI L W, WANG C Z, YUAN C S. Ginsenosides from American ginseng: chemical and pharmacological diversity[J]. Phytochemistry, 2011, 72(8): 689-699.
DOI
URL
|
[4] |
LUO H M, SUN C, SUN Y Z, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers[J]. BMC Genomics, 2011, 12(Suppl 5): S5.
|
[5] |
欧阳丽娜, 向大位, 吴雪, 等. 竹节参化学成分及药理活性研究进展[J]. 中草药, 2010, 41(6): 1023-1027.
|
|
OUYANG L N, XIANG D W, WU X, et al. Research progress on the chemical constituents and pharmacological activities of Panax japonicus[J]. Acupuncture Research, 2010, 41(6): 1023-1027. (in Chinese)
|
[6] |
DENG B, ZHANG P, GE F, et al. Enhancement of triterpenoid saponins biosynthesis in Panax notoginseng cells by co-overexpressions of 3-hydroxy-3-methylglutaryl CoA reductase and squalene synthase genes[J]. Biochemical Engineering Journal, 2017, 122: 38-46.
DOI
URL
|
[7] |
ZHANG D H, JIANG L X, LI N, et al. Overexpression of the squalene epoxidase gene alone and in combination with the 3-hydroxy-3-methylglutaryl coenzyme A gene increases ganoderic acid production in Ganoderma Lingzhi[J]. Journal of Agricultural and Food Chemistry, 2017, 65(23): 4683-4690.
DOI
URL
|
[8] |
刘美佳, 于怡琳, 姜森, 等. 珠子参中法尼基焦磷酸合酶(FPS)对皂苷生物合成的影响研究[J]. 植物研究, 2018(4):611-618.
|
|
LIU M J, YU Y L, JIANG S, et al. Effect of farnesyl-pyrophosphate synthase(FPS) on the biosynthesis of saponins in Panax japonicus[J]. Bulletin of Botanical Research, 2018(4):611-618. (in Chinese with English abstract)
|
[9] |
WANG J, LI Y, LIU D. Cloning and characterization of farnesyl diphosphate synthase gene involved in triterpenoids biosynthesis from Poriacocos[J]. International Journal of Molecular Sciences, 2014, 15(12): 22188-22202.
DOI
URL
|
[10] |
杨延, 张翔, 姜森, 等. 珠子参中皂苷成分及其药理活性研究进展[J]. 食品工业科技, 2019, 40(2): 347-356.
|
|
YANG Y, ZHANG X, JIANG S, et al. Research progress on saponins and pharmacological activities of Panax japonicus[J]. Science and Technology of Food Industry, 2019, 40(2): 347-356. (in Chinese)
|
[11] |
HUANG Z W, LIN J C, CHENG Z X, et al. Production of oleanane-type sapogenin in transgenic rice via expression of β-amyrin synthase gene from Panax japonicus C. A. Mey[J]. BMC Biotechnology, 2015, 15: 45.
DOI
URL
|
[12] |
ZHAO C, XU T H, LIANG Y L, et al. Functional analysis of β-amyrin synthase gene in ginsenoside biosynthesis by RNA interference[J]. Plant Cell Reports, 2015, 34(8): 1307-1315.
DOI
URL
|
[13] |
DENG B, HUANG Z J, GE F, et al. An AP2/ERF family transcription factor PnERF1 raised the biosynthesis of saponins in Panax notoginseng[J]. Journal of Plant Growth Regulation, 2017, 36(3): 691-701.
DOI
URL
|
[14] |
HOFGEN R, WILLMITZER L. Storage of competent cells for Agrobacterium transformation[J]. Nucleic Acids Research, 1988, 16(20): 9877.
DOI
URL
|
[15] |
ZHANG X, GE F, DENG B, et al. Molecular cloning and characterization of PnbHLH 1 transcription factor in Panax notoginseng[J]. Molecules (Basel, Switzerland), 2017, 22(8): 1268.
DOI
URL
|
[16] |
ABOUL-MAATY N A F, ORABY H A S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method[J]. Bulletin of the National Research Centre, 2019, 43: 25.
DOI
URL
|
[17] |
平洁, 梁赅, 汪晖, 等. 一种检测HMG-CoA还原酶活性的改良分光光度法及应用:CN102221531A[P]. 2011-10-19.
|
[18] |
李敏. 珠子参化学成分及生物活性研究[D]. 长春: 吉林大学, 2017.
|
|
LI M. Studies on the chemical constituents and bioactivities of Panacis majoris Rhizoma[D]. Changchun: Jilin University, 2017. (in Chinese with English abstract)
|
[19] |
ZHANG S P, WANG G, ZUO T, et al. Comparative transcriptome analysis of rhizome nodes and internodes in Panax japonicus var. major reveals candidate genes involved in the biosynthesis of triterpenoid saponins[J]. Genomics, 2020, 112(2): 1112-1119.
DOI
URL
|
[20] |
TANG Q Y, CHEN G, SONG W L, et al. Transcriptome analysis of Panax zingiberensis identifies genes encoding oleanolic acid glucuronosyltransferase involved in the biosynthesis of oleanane-type ginsenosides[J]. Planta, 2019, 249(2): 393-406.
DOI
URL
|
[21] |
陈勤, 雷君, 刘迪秋, 等. 人参属三萜皂苷骨架修饰的研究进展[J]. 中药材, 2020, 43(11): 2830-2836.
|
|
CHEN Q, LEI J, LIU D Q, et al. The research progress of ginseng triterpenoid saponin skeleton modifying enzyme[J]. Journal of Chinese Medicinal Materials, 2020, 43(11): 2830-2836. (in Chinese)
|
[22] |
YANG Y, GE F, SUN Y, et al. Strengthening triterpene saponins biosynthesis by over-expression of farnesyl pyrophosphate synthase gene and RNA interference of cycloartenol synthase gene in Panax notoginseng cells[J]. Molecules (Basel, Switzerland), 2017, 22(4): 581.
DOI
URL
|
[23] |
KIM Y K, KIM Y B, UDDIN M R, et al. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase[J]. ACS Synthetic Biology, 2014, 3(10): 773-779.
DOI
URL
|
[24] |
LIU Y, CHEN H H, WEN H, et al. Enhancing the accumulation of beta-amyrin in Saccharomyces cerevisiae by co-expression of Glycyrrhiza uralensis squalene synthase 1 and beta-amyrin synthase genes[J]. Acta Pharmaceutica Sinica, 2014, 49(5): 734-741.
|
[25] |
LU J, LI J X, WANG S H, et al. Advances in ginsenoside biosynthesis and metabolic regulation[J]. Biotechnology and Applied Biochemistry, 2018, 65(4): 514-522.
DOI
URL
|
[26] |
ZHAO C, XU T H, LIANG Y L, et al. Functional analysis of β-amyrin synthase gene in ginsenoside biosynthesis by RNA interference[J]. Plant Cell Reports, 2015, 34(8): 1307-1315.
DOI
URL
|