[1] |
JOSHI N, WALTER J M, MISHARIN A V. Alveolar macrophages[J]. Cellular Immunology, 2018, 330: 86-90.
DOI
URL
|
[2] |
RIVERA A, SIRACUSA M C, YAP G S, et al. Innate cell communication kick-starts pathogen-specific immunity[J]. Nature Immunology, 2016, 17(4): 356-363.
DOI
URL
|
[3] |
ALLARD B, PANARITI A, MARTIN J G. Alveolar macrophages in the resolution of inflammation, tissue repair, and tolerance to infection[J]. Frontiers in Immunology, 2018, 9: 1777.
DOI
URL
|
[4] |
LIAO H, LI Y P, ZHANG X L, et al. Protective effects of thalidomide on high-glucose-induced podocyte injury through in vitro modulation of macrophage M1/M2 differentiation[J]. Journal of Immunology Research, 2020, 2020: 8263598.
|
[5] |
BOSARGE P L, KERBY J D. Stress-induced hyperglycemia: is it harmful following trauma?[J]. Advances in Surgery, 2013, 47: 287-297.
DOI
URL
|
[6] |
WEI M M, LI Z G, XIAO L, et al. Effects of ROS-relative NF-κB signaling on high glucose-induced TLR4 and MCP-1 expression in podocyte injury[J]. Molecular Immunology, 2015, 68(2): 261-271.
DOI
URL
|
[7] |
詹聃婷, 丁农乐, 张云水, 等. FPS-ZM1拮抗晚期糖基化终末产物受体逆转高糖所致的牙周膜成纤维细胞炎症反应[J]. 口腔医学研究, 2017, 33(11): 1156-1160.
|
|
ZHAN D T, DING N L, ZHANG Y S, et al. FPS-ZM1 rescues the inflammatory response of hPDLFs caused by high glucose via inhibition of RAGE[J]. Journal of Oral Science Research, 2017, 33(11): 1156-1160. (in Chinese with English abstract)
|
[8] |
HU L L, YANG H X, AI M, et al. Inhibition of TLR4 alleviates the inflammation and apoptosis of retinal ganglion cells in high glucose[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255(11): 2199-2210.
DOI
URL
|
[9] |
HAN L P, LI C J, SUN B, et al. Protective effects of celastrol on diabetic liver injury via TLR4/MyD88/NF-κB signaling pathway in type 2 diabetic rats[J]. Journal of Diabetes Research, 2016, 2016: 2641248.
|
[10] |
LI H, LUO H Y, LIU Q, et al. Intermittent high glucose exacerbates A-FABP activation and inflammatory response through TLR4-JNK signaling in THP-1 cells[J]. Journal of Immunology Research, 2018, 2018: 1319272.
|
[11] |
TSENG H H L, VONG C T, KWAN Y W, et al. TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p 47 phox under high glucose in human monocytic cells[J]. Scientific Reports, 2016, 6: 35016.
DOI
URL
|
[12] |
QUERIO G, ANTONIOTTI S, FOGLIETTA F, et al. Chamazulene attenuates ROS levels in bovine aortic endothelial cells exposed to high glucose concentrations and hydrogen peroxide[J]. Frontiers in Physiology, 2018, 9: 246.
DOI
URL
|
[13] |
阳明贤, 左之才, 李碧, 等. 抗胰岛素蛋白(resistin)促进体外培养的牛肺泡巨噬细胞炎症因子的产生及其机制[J]. 细胞与分子免疫学杂志, 2018, 34(8): 673-677.
|
|
YANG M X, ZUO Z C, LI B, et al. Resistin promotes the production of inflammatory factors in cultured bovine alveolar macrophages and its mechanism[J]. Chinese Journal of Cellular and Molecular Immunology, 2018, 34(8): 673-677. (in Chinese with English abstract)
|
[14] |
LU C P, HUANG C Y, WANG S H, et al. Improvement of hyperglycemia in a murine model of insulin resistance and high glucose-and inflammasome-mediated IL-1β expressions in macrophages by silymarin[J]. Chemico-Biological Interactions, 2018, 290: 12-18.
DOI
URL
|
[15] |
WU Y, SONG L T, LI J S, et al. MicroRNA-126 regulates inflammatory cytokine secretion in human gingival fibroblasts under high glucose via targeting tumor necrosis factor receptor associated factor 6[J]. Journal of Periodontology, 2017, 88(11): e179-e187.
|
[16] |
NIELSEN T B, PANTAPALANGKOOR P, YAN J, et al. Diabetes exacerbates infection via hyperinflammation by signaling through TLR4 and RAGE[J]. mBio, 2017, 8(4): DOI: 10.1128/mbio.00818-17.
DOI
|
[17] |
TAKEDA K, AKIRA S. Toll-like receptors[J]. Current Protocols in Immunology, 2015, 109(1): DOI: 10.1002/0471142735.im1412s109.
DOI
|
[18] |
DEVARAJ S, DASU M R, ROCKWOOD J, et al. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: further evidence of a proinflammatory state[J]. The Journal of Clinical Endocrinology & Metabolism, 2008, 93(2): 578-583.
DOI
URL
|
[19] |
SU J, REN J, CHEN H Y, et al. MicroRNA-140-5p ameliorates the high glucose-induced apoptosis and inflammation through suppressing TLR4/NF-κB signaling pathway in human renal tubular epithelial cells[J]. Bioscience Reports, 2020, 40(3): DOI: 10.1042/bsr20192384.
DOI
|
[20] |
史海涛, 董蕾, 刘亚萍, 等. 高糖环境对肝星状细胞TLR4表达及脂多糖诱导的炎症因子表达的影响[J]. 南方医科大学学报, 2013, 33(3): 386-390.
|
|
SHI H T, DONG L, LIU Y P, et al. Effect of high glucose on toll-like receptor 4 expression and LPS-induced proinflammatory cytokine production in hepatic stellate cells in vitro[J]. Journal of Southern Medical University, 2013, 33(3): 386-390. (in Chinese with English abstract)
|
[21] |
GĄSIOROWSKI K, BROKOS B, ECHEVERRIA V, et al. RAGE-TLR crosstalk sustains chronic inflammation in neurodegeneration[J]. Molecular Neurobiology, 2018, 55(2): 1463-1476.
DOI
URL
|
[22] |
ZHAO Y X, LUO C, CHEN J L, et al. High glucose-induced complement component 3 up-regulation via RAGE-p38MAPK-NF-κB signalling in astrocytes: In vivo and in vitro studies[J]. Journal of Cellular and Molecular Medicine, 2018, 22(12): 6087-6098.
DOI
URL
|
[23] |
YAMAMOTO M, SATO S, HEMMI H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway[J]. Science, 2003, 301(5633): 640-643.
DOI
URL
|
[24] |
SAKAGUCHI M, MURATA H, YAMAMOTO K I, et al. TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding[J]. PLoS One, 2011, 6(8): e23132.
DOI
URL
|
[25] |
IBRAHIM Z A, ARMOUR C L, PHIPPS S, et al. RAGE and TLRs: relatives, friends or neighbours?[J]. Molecular Immunology, 2013, 56(4): 739-744.
DOI
URL
|
[26] |
王国艮, 吴鑫, 孟庆翔, 等. 运输应激对反刍动物机体功能及肉品质影响的研究进展[J]. 中国畜牧兽医, 2017, 44(3): 755-760.
|
|
WANG G G, WU X, MENG Q X, et al. Research progress on effect of transport stress on ruminants body function and meat quality[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(3): 755-760. (in Chinese with English abstract)
|
[27] |
EARLEY B, BUCKHAM SPORER K, GUPTA S. Invited review: relationship between cattle transport, immunity and respiratory disease[J]. Animal, 2017, 11(3): 486-492.
DOI
URL
|