浙江农业学报 ›› 2022, Vol. 34 ›› Issue (4): 736-745.DOI: 10.3969/j.issn.1004-1524.2022.04.10
张碧云1,2(), 程平2,3,4,*(
), 李宏, 武胜利, 张志刚
收稿日期:
2021-07-10
出版日期:
2022-04-25
发布日期:
2022-04-28
通讯作者:
程平
作者简介:
*程平,E-mail: 84966324@qq.com基金资助:
ZHANG Biyun1,2(), CHENG Ping2,3,4,*(
), LI Hong, WU Shengli, ZHANG Zhigang
Received:
2021-07-10
Online:
2022-04-25
Published:
2022-04-28
Contact:
CHENG Ping
摘要:
为分析阿克苏地区苹果树在不同灌水量条件下(滴灌单次灌水量99.0、148.5、198 m3·hm-2,分别标记为W1、W2、W3)茎流变化规律和气象因子对其的影响,以红肉苹果树(红色之爱119/06)为试验材料,2020年6—9月通过TDP插针式茎流仪连续观测苹果树茎流速率,用HOBO小型气象站自动获取气象数据。结果表明,不同灌水量条件下苹果树茎流速率均呈昼高夜低的变化趋势,夜间茎流速率变化平稳。苹果树日均茎流速率排序为W3>W2>W1。瞬时间尺度下大气温度、太阳辐射和饱和水汽压差是影响茎流速率的关键影响因子,日尺度下50 cm土壤体积含水量对茎流速率影响显著。适当减少灌水量有利于提高灌溉水分生产率,增加总糖和维生素C含量,降低总酸含量。W2处理的灌水量更适合研究区苹果树灌溉。7、8月份苹果树茎流速率较高,该时期蒸腾耗水较高,应及时补充灌水,选择日出前或日落后灌水效果最佳。
中图分类号:
张碧云, 程平, 李宏, 武胜利, 张志刚. 不同灌水量条件下苹果树茎流变化规律及其影响因素[J]. 浙江农业学报, 2022, 34(4): 736-745.
ZHANG Biyun, CHENG Ping, LI Hong, WU Shengli, ZHANG Zhigang. Sap flow change rules of apple tree under different irrigation amounts and its influencing factors[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 736-745.
土层深度 Soil depth/cm | 土壤容重 Volume weight of soil/(g·cm-3) | 田间持水量 Field capacity/% | 有机质 Organic matter/ (g·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) | pH值 pH value |
---|---|---|---|---|---|---|
0-10 | 1.34 | 16.54 | 12.9 | 108 | 7.76 | 8.04 |
10-30 | 1.63 | 19.66 | 11.8 | 105 | 6.94 | 8.02 |
30-50 | 1.51 | 20.03 | 8.66 | 100 | 9.49 | 7.98 |
50-70 | 1.32 | 24.69 | 11.2 | 63 | 4.72 | 7.94 |
表1 苹果园土壤理化性质
Table 1 Physical and chemical properties of soil in apple orchard
土层深度 Soil depth/cm | 土壤容重 Volume weight of soil/(g·cm-3) | 田间持水量 Field capacity/% | 有机质 Organic matter/ (g·kg-1) | 速效钾 Available potassium/ (mg·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) | pH值 pH value |
---|---|---|---|---|---|---|
0-10 | 1.34 | 16.54 | 12.9 | 108 | 7.76 | 8.04 |
10-30 | 1.63 | 19.66 | 11.8 | 105 | 6.94 | 8.02 |
30-50 | 1.51 | 20.03 | 8.66 | 100 | 9.49 | 7.98 |
50-70 | 1.32 | 24.69 | 11.2 | 63 | 4.72 | 7.94 |
处理 Treatment | 滴头流量 Drip discharge/(L·h-1) | 灌水历时 Irrigation duration/h | 公顷株数 Number of plants per hm2 | 单次灌溉定额 Single irrigation quota/(m3·hm-2) |
---|---|---|---|---|
W1 | 10 | 6 | 1 650 | 99.0 |
W2 | 10 | 9 | 1 650 | 148.5 |
W3 | 10 | 12 | 1 650 | 198.0 |
表2 滴灌水平设置
Table 2 Level setting of drip irrigation
处理 Treatment | 滴头流量 Drip discharge/(L·h-1) | 灌水历时 Irrigation duration/h | 公顷株数 Number of plants per hm2 | 单次灌溉定额 Single irrigation quota/(m3·hm-2) |
---|---|---|---|---|
W1 | 10 | 6 | 1 650 | 99.0 |
W2 | 10 | 9 | 1 650 | 148.5 |
W3 | 10 | 12 | 1 650 | 198.0 |
图2 主要生育期红肉苹果树日均茎流速率 无相同小写字母表示相同生育期不同处理在0.05水平上差异显著。
Fig.2 Daily average sap flow rate in main growth period of red apple trees Data marked without the same lowercase letter at the same growth period indicated significant differences at P<0.05.
月份Month | 6月June | 7月July | 8月August | 9月September | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
处理Treatment | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 |
启动时间 Start time | 9:00- 9:30 | 9:00- 9:30 | 9:00- 9:30 | 9:30- 10:00 | 9:30- 10:00 | 9:30- 10:00 | 9:30- 10:00 | 9:30- 10:00 | 9:30- 10:00 | 10:30- 11:00 | 10:30- 11:00 | 10:30- 11:00 |
到达峰值时间 | 11:30 | 12:00 | 12:30 | 12:00 | 13:00 | 14:00 | 12:00 | 13:00 | 14:00 | 13:00 | 13:30 | 14:00 |
Peak time | ||||||||||||
峰值 | 3.59 | 4.72 | 5.46 | 4.65 | 6.61 | 7.57 | 5.40 | 7.39 | 8.33 | 4.42 | 6.41 | 7.35 |
Peak value/(cm·h-1) | ||||||||||||
持续时间 | 11.0 | 11.5 | 11.5 | 11.5 | 11.5 | 12.0 | 11.5 | 11.5 | 12.0 | 9.0 | 9.5 | 9.5 |
Duration time/h |
表3 红肉苹果树茎流速率月际动态变化
Table 3 Monthly dynamic variation of sap flow rate of red apple trees
月份Month | 6月June | 7月July | 8月August | 9月September | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
处理Treatment | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 | W1 | W2 | W3 |
启动时间 Start time | 9:00- 9:30 | 9:00- 9:30 | 9:00- 9:30 | 9:30- 10:00 | 9:30- 10:00 | 9:30- 10:00 | 9:30- 10:00 | 9:30- 10:00 | 9:30- 10:00 | 10:30- 11:00 | 10:30- 11:00 | 10:30- 11:00 |
到达峰值时间 | 11:30 | 12:00 | 12:30 | 12:00 | 13:00 | 14:00 | 12:00 | 13:00 | 14:00 | 13:00 | 13:30 | 14:00 |
Peak time | ||||||||||||
峰值 | 3.59 | 4.72 | 5.46 | 4.65 | 6.61 | 7.57 | 5.40 | 7.39 | 8.33 | 4.42 | 6.41 | 7.35 |
Peak value/(cm·h-1) | ||||||||||||
持续时间 | 11.0 | 11.5 | 11.5 | 11.5 | 11.5 | 12.0 | 11.5 | 11.5 | 12.0 | 9.0 | 9.5 | 9.5 |
Duration time/h |
处理 Treatment | 太阳辐射 Solar radiation | 风速 Wind speed | 大气温度 Air temperature | 空气相对湿度 Relative humidity | 饱和水气压差 Vapor pressure deficit |
---|---|---|---|---|---|
W1 | 0.862** | 0.244** | 0.836** | -0.705** | 0.774** |
W2 | 0.872** | 0.258** | 0.858** | -0.726** | 0.804** |
W3 | 0.871** | 0.259** | 0.867** | -0.729** | 0.811** |
表4 红肉苹果树茎流速率与气象因子的相关系数
Table 4 Correlation coefficient between sap flow rate and meteorological factors of red apple trees
处理 Treatment | 太阳辐射 Solar radiation | 风速 Wind speed | 大气温度 Air temperature | 空气相对湿度 Relative humidity | 饱和水气压差 Vapor pressure deficit |
---|---|---|---|---|---|
W1 | 0.862** | 0.244** | 0.836** | -0.705** | 0.774** |
W2 | 0.872** | 0.258** | 0.858** | -0.726** | 0.804** |
W3 | 0.871** | 0.259** | 0.867** | -0.729** | 0.811** |
处理 Treatment | 自变量 Independent variable | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 合计 Total | ||
---|---|---|---|---|---|---|
X1 | X2 | X3 | ||||
W1 | X1 | 0.561 | — | 0.716 | -0.415 | 0.301 |
X2 | 0.927 | 0.433 | — | -0.524 | -0.091 | |
X3 | -0.545 | 0.427 | 0.892 | — | 1.319 | |
W2 | X1 | 0.539 | — | 0.649 | -0.317 | 0.332 |
X2 | 0.841 | 0.416 | — | -0.400 | 0.016 | |
X3 | -0.416 | 0.410 | 0.809 | — | 1.219 | |
W3 | X1 | 0.518 | — | 0.673 | -0.321 | 0.352 |
X2 | 0.872 | 0.400 | — | -0.406 | -0.006 | |
X3 | -0.422 | 0.394 | 0.839 | — | 1.233 |
表5 红肉苹果树茎流速率与气象因子的通径分析
Table 5 Path analysis of sap flow rate and meteorological factors of red apple trees
处理 Treatment | 自变量 Independent variable | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 合计 Total | ||
---|---|---|---|---|---|---|
X1 | X2 | X3 | ||||
W1 | X1 | 0.561 | — | 0.716 | -0.415 | 0.301 |
X2 | 0.927 | 0.433 | — | -0.524 | -0.091 | |
X3 | -0.545 | 0.427 | 0.892 | — | 1.319 | |
W2 | X1 | 0.539 | — | 0.649 | -0.317 | 0.332 |
X2 | 0.841 | 0.416 | — | -0.400 | 0.016 | |
X3 | -0.416 | 0.410 | 0.809 | — | 1.219 | |
W3 | X1 | 0.518 | — | 0.673 | -0.321 | 0.352 |
X2 | 0.872 | 0.400 | — | -0.406 | -0.006 | |
X3 | -0.422 | 0.394 | 0.839 | — | 1.233 |
处理 Treatment | 回归方程 Regression equation | 决定系数 R2 |
---|---|---|
W1 | Y=0.927X2+0.561X1-0.545X3 | 0.837 |
W2 | Y=0.841X2+0.539X1-0.416X3 | 0.858 |
W3 | Y=0.872X2+0.518X1-0.422X3 | 0.865 |
表6 红肉苹果树茎流速率与气象因子的回归方程
Table 6 Regression equation of sap flow rate and meteorological factors of red apple trees
处理 Treatment | 回归方程 Regression equation | 决定系数 R2 |
---|---|---|
W1 | Y=0.927X2+0.561X1-0.545X3 | 0.837 |
W2 | Y=0.841X2+0.539X1-0.416X3 | 0.858 |
W3 | Y=0.872X2+0.518X1-0.422X3 | 0.865 |
处理 Treatment | 土壤体积含水量Soil volumetric moisture content | |||
---|---|---|---|---|
10 cm土层 10 cm soil layer | 30 cm土层 30 cm soil layer | 50 cm土层 50 cm soil layer | 70 cm土层 70 cm soil layer | |
W1 | 0.429* | 0.535* | 0.828** | 0.446* |
W2 | 0.437* | 0.594* | 0.878** | 0.483* |
W3 | 0.499* | 0.616* | 0.888** | 0.510* |
表7 红肉苹果树茎流速率与土壤体积含水量的相关系数
Table 7 Correlation coefficient of sap flow rate and soil volumetric moisture content of red apple trees
处理 Treatment | 土壤体积含水量Soil volumetric moisture content | |||
---|---|---|---|---|
10 cm土层 10 cm soil layer | 30 cm土层 30 cm soil layer | 50 cm土层 50 cm soil layer | 70 cm土层 70 cm soil layer | |
W1 | 0.429* | 0.535* | 0.828** | 0.446* |
W2 | 0.437* | 0.594* | 0.878** | 0.483* |
W3 | 0.499* | 0.616* | 0.888** | 0.510* |
处理 Treatment | 自变量 Independent variable | 直接通径系数 Direct path coefficient |
---|---|---|
W1 | S1 | 0.816 |
W2 | S1 | 0.838 |
W3 | S1 | 0.884 |
表8 红肉苹果树茎流速率与土壤体积含水量的通径分析
Table 8 Path analysis of sap flow rate and soil volumetric moisture content of red apple trees
处理 Treatment | 自变量 Independent variable | 直接通径系数 Direct path coefficient |
---|---|---|
W1 | S1 | 0.816 |
W2 | S1 | 0.838 |
W3 | S1 | 0.884 |
处理 Treatment | 果形指数 Fruit shape index | 单果重 Single fruit weight/g | 产量 Yield/(kg·hm-2) | 灌溉水分生产率 iWUE/(kg·m-3) |
---|---|---|---|---|
W1 | 0.848±0.01 b | 155.54±2.10 b | 15 090.45±463.95 b | 2.80±0.15 b |
W2 | 0.924±0.01 a | 172.57±2.24 a | 17 965.35±459.41 a | 3.08±0.14 a |
W3 | 0.939±0.09 a | 174.81±0.78 a | 18 581.40±101.28 a | 2.96±0.03 a |
表9 不同灌水量对红肉苹果产量的影响
Table 9 Effect of different irrigation amounts on fruit yield of red apples
处理 Treatment | 果形指数 Fruit shape index | 单果重 Single fruit weight/g | 产量 Yield/(kg·hm-2) | 灌溉水分生产率 iWUE/(kg·m-3) |
---|---|---|---|---|
W1 | 0.848±0.01 b | 155.54±2.10 b | 15 090.45±463.95 b | 2.80±0.15 b |
W2 | 0.924±0.01 a | 172.57±2.24 a | 17 965.35±459.41 a | 3.08±0.14 a |
W3 | 0.939±0.09 a | 174.81±0.78 a | 18 581.40±101.28 a | 2.96±0.03 a |
处理 Tteatment | 总糖 Total sugar/% | 总酸 Total acid/(g·kg-1) | 可溶性固形物 Soluble solid/% | 维生素C Vitamin C/(mg·kg-1) | 纤维素 Cellulose/% |
---|---|---|---|---|---|
W1 | 15.18±0.90 b | 6.45±0.13 b | 17.77±0.17 b | 46.7±1.8 c | 0.93±0.02 b |
W2 | 20.47±0.73 a | 7.25±0.32 ab | 19.78±0.37 a | 60.3±1.1 a | 1.04±0.09 ab |
W3 | 19.40±0.46 a | 7.92±0.62 a | 20.40±0.29 a | 54.0±2.9 b | 1.15±0.06 a |
表10 不同灌水量对红肉苹果品质的影响
Table 10 Effects of different irrigation amounts on fruit quality of red apple
处理 Tteatment | 总糖 Total sugar/% | 总酸 Total acid/(g·kg-1) | 可溶性固形物 Soluble solid/% | 维生素C Vitamin C/(mg·kg-1) | 纤维素 Cellulose/% |
---|---|---|---|---|---|
W1 | 15.18±0.90 b | 6.45±0.13 b | 17.77±0.17 b | 46.7±1.8 c | 0.93±0.02 b |
W2 | 20.47±0.73 a | 7.25±0.32 ab | 19.78±0.37 a | 60.3±1.1 a | 1.04±0.09 ab |
W3 | 19.40±0.46 a | 7.92±0.62 a | 20.40±0.29 a | 54.0±2.9 b | 1.15±0.06 a |
[1] | 李雪冬, 李玉春, 姜中武. 新疆阿克苏地区苹果生产现状及发展前景[J]. 烟台果树, 2020(3): 10-12. |
LI X D, LI Y C, JIANG Z W. Present situation and development prospect of apple production in Aksu area of Xinjiang[J]. Yantai Fruits, 2020(3): 10-12. (in Chinese) | |
[2] | 中华人民共和国水利部. 2019年中国水资源公报[EB/OL]. (2020-08-03)[2021-07-09]. http://www.mwr.gov.cn/sjtjgbszygb/202008/t20200803_1430726.html. |
[3] | 胡永翔, 李援农, 张莹. 黄土高原区滴灌枣树作物系数和需水规律试验[J]. 农业机械学报, 2012, 43(11): 87-91. |
HU Y X, LI Y N, ZHANG Y. Experiment on crop coefficient and water requirement of drip-irrigation jujube in loess plateau of China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 87-91 (in Chinese with English abstract) | |
[4] |
GRANIER A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiology, 1987, 3(4): 309-320.
DOI URL |
[5] | 王华田, 马履一. 利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究[J]. 植物生态学报, 2002, 26(6): 661-667. |
WANG H T, MA L Y. Measurement of whole tree’s water consumption with thermal dissipation sap flow probe (TDP)[J]. Acta Phytoecologica Sinica, 2002, 26(6): 661-667. (in Chinese with English abstract) | |
[6] |
VERGEYNST L L, VANDEGEHUCHTE M W, MCGUIRE M A, et al. Changes in stem water content influence sap flux density measurements with thermal dissipation probes[J]. Trees, 2014, 28(3): 949-955.
DOI URL |
[7] | 石游, 李建贵, 杨振. 新疆阿克苏干旱区富士苹果树干液流动态变化研究[J]. 西北植物学报, 2012, 32(3): 546-554. |
SHI Y, LI J G, YANG Z. Studies on the variation law of stem sap flow of Fuji apple in arid area[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(3): 546-554. (in Chinese with English abstract) | |
[8] | 张亚雄, 孙西欢, 马娟娟, 等. 蓄水坑灌下苹果树茎流速率日变化及其影响因子的研究[J]. 节水灌溉, 2017(5): 11-15. |
ZHANG Y X, SUN X H, MA J J, et al. Daily variation of stem flow rate of apple tree and influence factors under water storage pit irrigation[J]. Water Saving Irrigation, 2017(5): 11-15. (in Chinese with English abstract) | |
[9] | 夏桂敏, 孙媛媛, 王玮志, 等. ‘寒富’苹果树茎流特征及其对环境因子的响应[J]. 中国农业科学, 2019, 52(4): 701-714. |
XIA G M, SUN Y Y, WANG W Z, et al. The characteristics of sap flow of ‘Hanfu’ apple trees and its response to environmental factors[J]. Scientia Agricultura Sinica, 2019, 52(4): 701-714. (in Chinese with English abstract) | |
[10] | 孙习轩. 我国北方苹果树的需水量与灌溉问题的探讨[J]. 河北农业科技, 2008(11): 40. |
SUN X X. Study on water demand and irrigation of apple trees in north China[J]. Hebei Agricultural Science and Technology, 2008(11): 40. (in Chinese) | |
[11] | 周玉燕, 廖空太, 张莉, 等. 山旱塬区花牛苹果树干茎流及其与环境因子的关系[J]. 经济林研究, 2017, 35(1): 30-35. |
ZHOU Y Y, LIAO K T, ZHANG L, et al. Stem flow of Huaniu apple tree and its relationship with environmental factors at mountain plateau areas[J]. Nonwood Forest Research, 2017, 35(1): 30-35. (in Chinese with English abstract) | |
[12] | 张静, 王力, 韩雪, 等. 不同时间尺度下黄土塬区19年生苹果树干液流速率与环境因子的关系[J]. 中国农业科学, 2016, 49(13): 2583-2592. |
ZHANG J, WANG L, HAN X, et al. The relationship between sap flow velocity and environmental factors of the 19 a apple trees on the loess plateau at different time scales[J]. Scientia Agricultura Sinica, 2016, 49(13): 2583-2592. (in Chinese with English abstract) | |
[13] | 冯志文, 姜远茂, 田玉政, 等. 气象因子对红富士苹果树干茎流特性的影响[J]. 山东农业大学学报(自然科学版), 2013, 44(1): 18-24. |
FENG Z W, JIANG Y M, TIAN Y Z, et al. Research on stem sap flow character of ‘Fuji’ apple trees and the response to main meteorological factors[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2013, 44(1): 18-24. (in Chinese with English abstract) | |
[14] | 井春芝. 库尔勒香梨简约化栽培关键技术[J]. 山西果树, 2017(4): 39-41. |
JING C Z. Key techniques of simplified cultivation of Korla pear[J]. Shanxi Fruits, 2017(4): 39-41. (in Chinese) | |
[15] | 王力, 王艳萍. 黄土塬区苹果树干液流特征[J]. 农业机械学报, 2013, 44(10): 152-158. |
WANG L, WANG Y P. Characteristics of stem sap flow of apple trees in loess table land[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 152-158. (in Chinese with English abstract) | |
[16] | 续海红, 郭向红, 仇群伊. 不同天气条件下苹果树液流日变化规律研究[J]. 中国农学通报, 2015, 31(22): 120-124. |
XU H H, GUO X H, QIU Q Y. Research on daily variation of sap flow of apple trees under different weather conditions[J]. Chinese Agricultural Science Bulletin, 2015, 31(22): 120-124. (in Chinese with English abstract) | |
[17] | 梁自强, 胡笑涛, 冉辉, 等. 渭北旱塬不同水肥条件下气象因子对苹果树干茎流的影响[J]. 节水灌溉, 2020(1): 10-14. |
LIANG Z Q, HU X T, RAN H, et al. Effects of meteorological factors on stem flow of apple under different water and fertilizer conditions in the upland of Weibei River[J]. Water Saving Irrigation, 2020(1): 10-14. (in Chinese with English abstract) | |
[18] | 中华人民共和国农业农村部. 水果和蔬菜可溶性固形物含量的测定折射仪法:NY/T 2637-2014[S]. 北京: 中国标准出版社, 2014. |
[19] | 国家市场管理监督总局. 食品安全国家标准食品中总酸的测定: GB/T 12456-2021[S]. 北京: 中国标准出版社, 2021. |
[20] | 李永武, 韩明玉, 范崇辉, 等. 富士苹果不同拉枝角度叶片营养物质含量与果实品质之间的关系[J]. 西北农业学报, 2007, 16(2): 161-164. |
LI Y W, HAN M Y, FAN C H, et al. Relationship between branch nutrients and fruit quality of different branch angle in Fuji[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16(2): 161-164. (in Chinese with English abstract) | |
[21] | 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007. |
[22] | 王明霞, 孙中平, 于唐丽, 等. 不同种类及相同种类不同品种蔬菜的粗纤维含量分析[J]. 科技资讯, 2018, 16(13): 212-213. |
WANG M X, SUN Z P, YU T L, et al. Analysis of crude fiber content of different kinds of vegetables and different varieties of the same kind[J]. Science & Technology Information, 2018, 16(13): 212-213. (in Chinese) | |
[23] | 刘亚南, 白美健, 张宝忠, 等. 黄金梨产量及水肥生产率对水氮耦合的响应[J]. 灌溉排水学报, 2020, 39(11): 68-75. |
LIU Y N, BAI M J, ZHANG B Z, et al. Impact of different water-nitrogen couplings on yield and water-nitrogen productivity of golden pear[J]. Journal of Irrigation and Drainage, 2020, 39(11): 68-75. (in Chinese with English abstract) | |
[24] | 赵自国, 夏江宝, 王荣荣, 等. 不同土壤水分条件下叶底珠(Securinega suffruticosa)茎流特征[J]. 中国沙漠, 2013, 33(5): 1385-1389. |
ZHAO Z G, XIA J B, WANG R R, et al. Effects of soil moisture on characteristics of sap flow of Securinega suffruticosa[J]. Journal of Desert Research, 2013, 33(5): 1385-1389. (in Chinese with English abstract) | |
[25] | 王文明, 郑德明, 姜益娟, 等. 滴灌条件下枣树耗水规律的研究[J]. 干旱地区农业研究, 2014, 32(6): 38-42. |
WANG W M, ZHENG D M, JIANG Y J, et al. Research on water consumption rule of jujube tree under drop irrigation[J]. Agricultural Research in the Arid Areas, 2014, 32(6): 38-42. (in Chinese with English abstract) | |
[26] | 党宏忠, 冯金超, 王檬檬, 等. 黄土高原苹果树各生育期需水特征研究[J]. 果树学报, 2020, 37(5): 659-667. |
DANG H Z, FENG J C, WANG M M, et al. A study on water demand characteristics of apple trees in different growing stages in the Loess Plateau Area[J]. Journal of Fruit Science, 2020, 37(5): 659-667. (in Chinese with English abstract) | |
[27] | 孟秦倩. 黄土高原山地苹果园土壤水分消耗规律与果树生长响应[D]. 杨凌: 西北农林科技大学, 2011. |
MENG Q Q. Soil moisture consumption pattern and growth response of apple orchard in the loess plateau[D]. Yangling: Northwest A & F University, 2011. (in Chinese with English abstract) | |
[28] | 解婷婷, 张希明, 梁少民, 等. 不同灌溉量对塔克拉玛干沙漠腹地梭梭水分生理特性的影响[J]. 应用生态学报, 2008, 19(4): 711-716. |
XIE T T, ZHANG X M, LIANG S M, et al. Effects of different irrigations on the water physiological characteristics of Haloxylon ammodendron in Taklimakan Desert hinterland[J]. Chinese Journal of Applied Ecology, 2008, 19(4): 711-716. (in Chinese with English abstract) | |
[29] | 丁日升, 康绍忠, 龚道枝. 苹果树液流变化规律研究[J]. 灌溉排水学报, 2004, 23(2): 21-25. |
DING R S, KANG S Z, GONG D Z. Responses of apple trees sap flow to temporal change in weather condition and soil water content by heat-pulse technique[J]. Journal of Irrigation and Drainage, 2004, 23(2): 21-25. (in Chinese with English abstract) | |
[30] | 王卓, 郭月峰, 祁伟, 等. 不同灌水梯度下沙棘液流特征与环境因子的关系[J]. 干旱区研究, 2020, 37(4): 1018-1025. |
WANG Z, GUO Y F, QI W, et al. Relationship between the characteristics of Hippophae rhamnoides fluid flow and environmental factors under different irrigation gradients[J]. Arid Zone Research, 2020, 37(4): 1018-1025. (in Chinese with English abstract) | |
[31] | 赵付勇, 赵经华, 付秋萍, 等. 不同灌水定额对滴灌条件下核桃树茎流速率的影响[J]. 节水灌溉, 2015(12): 35-39. |
ZHAO F Y, ZHAO J H, FU Q P, et al. Influence of different irrigation quota on sap flow rate of walnut trees under drip irrigation[J]. Water Saving Irrigation, 2015(12): 35-39. (in Chinese with English abstract) | |
[32] | 李宏, 刘帮, 程平, 等. 不同灌水量下幼龄枣树茎流变化规律[J]. 干旱地区农业研究, 2016, 34(1): 23-30. |
LI H, LIU B, CHENG P, et al. Variability of young jujube tree sap flow under different irrigation amount[J]. Agricultural Research in the Arid Areas, 2016, 34(1): 23-30. (in Chinese with English abstract) | |
[33] | 李思静, 查天山, 秦树高, 等. 油蒿(Artemisia ordosica)茎流动态及其环境控制因子[J]. 生态学杂志, 2014, 33(1): 112-118. |
LI S J, ZHA T S, QIN S G, et al. Temporal patterns and environmental controls of sap flow in Artemisia ordosica[J]. Chinese Journal of Ecology, 2014, 33(1): 112-118. (in Chinese with English abstract) | |
[34] |
赵平, 饶兴权, 马玲, 等. 基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度[J]. 植物生态学报, 2006, 30(4): 655-665.
DOI |
ZHAO P, RAO X Q, MA L, et al. Sap flow_scaled stand transpiration and canopy stomatal conductance in an Acacia mangium forest[J]. Journal of Plant Ecology, 2006, 30(4): 655-665. (in Chinese with English abstract) | |
[35] | 赵明玉, 李宏, 武胜利, 等. 果实膨大期干旱胁迫对‘红富士’苹果树生理特性的影响[J]. 西北农业学报, 2020, 29(12): 1839-1847. |
ZHAO M Y, LI H, WU S L, et al. Effect of drought stress on physiological characteristics of ‘Red Fuji’ apple trees during fruit expansion period[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2020, 29(12): 1839-1847. (in Chinese with English abstract) |
[1] | 王程宽, 黄振东, 刘兴泉, 洪小玲. 气象因子对红美人柑橘品质的影响[J]. 浙江农业学报, 2020, 32(10): 1798-1808. |
[2] | 李媛媛, 杨恒山, 张瑞富, 范秀艳, 李金琴, 柳宝林, 德力格尔. 浅埋滴灌条件下不同灌水量对春玉米干物质积累与转运的影响[J]. 浙江农业学报, 2017, 29(8): 1234-1242. |
[3] | 程平, 李长城, 李宏, 张志刚, 刘帮, 孙明森. 不同灌溉方式对干旱区枣树树干液流特征及果实品质的影响[J]. 浙江农业学报, 2017, 29(1): 64-72. |
[4] | 孙军波, 杨栋, 魏莎莎, 李清斌, 丁烨毅, 黄鹤楼. 大棚草莓产量动态预报模型研究[J]. 浙江农业学报, 2016, 28(9): 1514-1521. |
[5] | 许燎原1,赵丽稳1,胡宇峰2,邱海萍3,柴荣耀3,张震3,*. 稻瘟病菌孢子qPCR方法的建立及用于监测气传菌源的研究[J]. 浙江农业学报, 2016, 28(8): 1368-. |
[6] | 安巧霞,孙三民*,徐镕,顾凯凯,赵京浩,马金阳,蔡虹. 间接地下滴灌水盐运移影响因素研究[J]. 浙江农业学报, 2016, 28(5): 843-. |
[7] | 张育慧1,2,蔡敏2,舒素芳2,房玉伟3,薛占奎3,潘旭霞2,胡谷琅3,*. 金华市近30年气象要素变化对晚稻单产的影响 [J]. 浙江农业学报, 2014, 26(5): 1319-. |
[8] | 舒素芳;毛俊萱;蔡敏. 白玉兰始花期与气象因子的关系分析[J]. , 2013, 25(2): 0-251. |
[9] | 樊丽琴;杨建国;许兴;孙兆军;尚红莺. 施用烟气石膏和灌溉对土壤盐分和油葵产量的影响[J]. , 2011, 23(5): 0-976. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 574
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 416
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||