浙江农业学报 ›› 2022, Vol. 34 ›› Issue (6): 1258-1267.DOI: 10.3969/j.issn.1004-1524.2022.06.16
朱铭1,2(), 刘琛2, 林义成2, 郭彬2, 李华2, 傅庆林2,*(
)
收稿日期:
2021-07-03
出版日期:
2022-06-25
发布日期:
2022-06-30
通讯作者:
傅庆林
作者简介:
*傅庆林,E-mail: fuql161@aliyun.com基金资助:
ZHU Ming1,2(), LIU Chen2, LIN Yicheng2, GUO Bin2, LI Hua2, FU Qinglin2,*(
)
Received:
2021-07-03
Online:
2022-06-25
Published:
2022-06-30
Contact:
FU Qinglin
摘要:
浙江省中低产稻田土壤大多属于红壤,普遍存在土壤酸化、缺肥严重的问题。为提升红壤肥力进而获得水稻高产,以浙江省兰溪市红壤为对象,采用石灰石粉、腐殖酸和秸秆3种调理剂为材料,开展包含CK(不施肥且不施调理剂)、N(常规施肥)、NS(常规施肥+石灰石粉)、NSJ(常规施肥+石灰石粉+秸秆还田)、NSF(常规施肥+石灰石粉+腐殖酸)5个处理的水稻田间试验。结果表明,石灰石粉的施用能迅速提升土壤pH值,NS、NSJ和NSF处理的土壤pH值相较于CK显著(P<0.05)提高了1.17~1.60个单位。与CK和N处理相比,腐殖酸的施用显著(P<0.05)提高了土壤有机质量含量;秸秆还田或腐殖酸的施用均显著(P<0.05)提高了土壤速效钾含量。调理剂的施用提高了土壤微生物群落利用碳源的能力,还增加了土壤微生物磷脂脂肪酸(PLFA)含量,其中,以NSF处理的AWCD值和PLFA含量相较于CK提升最多。高通量测序结果表明,调理剂的施用显著改变了土壤微生物群落结构,增强了群落丰富度和群落多样性。石灰石粉、秸秆还田和腐殖酸均能显著(P<0.05)提高水稻产量,其中,以NSF处理的产量最高,较CK处理在水稻籽粒产量上提高了11.02%。综合来看,在试验条件下,NSF处理是改良红壤、提高水稻产量的最佳组合。。
中图分类号:
朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267.
ZHU Ming, LIU Chen, LIN Yicheng, GUO Bin, LI Hua, FU Qinglin. Effects of conditioning agents on soil fertility, microbial community diversity and rice yield in red soil[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1258-1267.
处理 Treatment | pH | OM/(g∙kg-1) | TN/(g∙kg-1) | AN/(mg∙kg-1) | AP/(mg∙kg-1) | AK/(mg∙kg-1) |
---|---|---|---|---|---|---|
CK | 5.18±0.05 b | 29.60±0.90 b | 1.99±0.13 a | 154.44±7.10 a | 5.18±1.79 c | 97.26±1.44 c |
N | 5.32±0.05 b | 30.00±1.37 b | 2.03±0.10 a | 151.41±8.61 a | 11.48±5.15 ab | 98.35±3.04 c |
NS | 6.35±0.66 a | 30.72±0.58 b | 2.00±0.06 a | 155.96±9.32 a | 8.75±0.73 bc | 104.24±5.68 bc |
NSJ | 6.42±0.52 a | 30.37±2.75 b | 2.02±0.12 a | 151.41±9.46 a | 13.19±5.58 a | 114.33±3.42 a |
NSF | 6.78±0.21 a | 36.74±4.90 a | 2.07±0.06 a | 149.22±1.62 a | 13.18±2.30 a | 111.73±2.58 ab |
表1 不同处理对红壤基本理化性状的影响
Table 1 Effect of different treatments on soil physiochemical properties
处理 Treatment | pH | OM/(g∙kg-1) | TN/(g∙kg-1) | AN/(mg∙kg-1) | AP/(mg∙kg-1) | AK/(mg∙kg-1) |
---|---|---|---|---|---|---|
CK | 5.18±0.05 b | 29.60±0.90 b | 1.99±0.13 a | 154.44±7.10 a | 5.18±1.79 c | 97.26±1.44 c |
N | 5.32±0.05 b | 30.00±1.37 b | 2.03±0.10 a | 151.41±8.61 a | 11.48±5.15 ab | 98.35±3.04 c |
NS | 6.35±0.66 a | 30.72±0.58 b | 2.00±0.06 a | 155.96±9.32 a | 8.75±0.73 bc | 104.24±5.68 bc |
NSJ | 6.42±0.52 a | 30.37±2.75 b | 2.02±0.12 a | 151.41±9.46 a | 13.19±5.58 a | 114.33±3.42 a |
NSF | 6.78±0.21 a | 36.74±4.90 a | 2.07±0.06 a | 149.22±1.62 a | 13.18±2.30 a | 111.73±2.58 ab |
处理 Treatment | 细菌 Bacteria | 真菌 Fungi | 革兰氏阴性菌 Gram-negative bacteria | 革兰氏阳性菌 Gram-positive bacteria | 合计 Total |
---|---|---|---|---|---|
CK | 14.49±0.28 c | 1.22±0.20 a | 10.44±0.46 d | 7.91±0.42 d | 34.06±0.06 e |
N | 18.21±0.54 b | 1.56±0.46 a | 13.99±0.91 c | 9.30±0.67 c | 43.07±0.21 d |
NS | 21.55±0.30 a | 1.43±0.20 a | 16.77±0.33 ab | 10.51±0.18 b | 50.26±0.14 c |
NSJ | 22.20±0.63 a | 1.79±0.64 a | 17.71±0.77 a | 10.54±0.70 b | 52.24±0.08 b |
NSF | 23.64±0.26 a | 1.84±0.67 a | 16.02±0.47 b | 12.66±0.08 a | 53.99±0.11 a |
表2 不同处理下土壤微生物的磷脂脂肪酸(PLFA)含量
Table 2 Phospholipid fatty acid (PLFA) content of soil microorganisms under different treatments nmol·g-1
处理 Treatment | 细菌 Bacteria | 真菌 Fungi | 革兰氏阴性菌 Gram-negative bacteria | 革兰氏阳性菌 Gram-positive bacteria | 合计 Total |
---|---|---|---|---|---|
CK | 14.49±0.28 c | 1.22±0.20 a | 10.44±0.46 d | 7.91±0.42 d | 34.06±0.06 e |
N | 18.21±0.54 b | 1.56±0.46 a | 13.99±0.91 c | 9.30±0.67 c | 43.07±0.21 d |
NS | 21.55±0.30 a | 1.43±0.20 a | 16.77±0.33 ab | 10.51±0.18 b | 50.26±0.14 c |
NSJ | 22.20±0.63 a | 1.79±0.64 a | 17.71±0.77 a | 10.54±0.70 b | 52.24±0.08 b |
NSF | 23.64±0.26 a | 1.84±0.67 a | 16.02±0.47 b | 12.66±0.08 a | 53.99±0.11 a |
处理 | 穗数 | 穗粒数 | 结实率 | 千粒重 | 产量 |
---|---|---|---|---|---|
Treatment | Ear number/(104 hm-2) | Grains per spike | Filled-grain percentage/% | 1 000-kernel weigh/g | Yield/(kg∙hm-2) |
CK | 368.85±3.41 ab | 123.52±5.29 a | 81.33±3.16 a | 24.43±0.52 a | 8 351±150 c |
N | 351.50±12.51 b | 124.33±2.52 a | 82.48±2.86 a | 25.68±1.31 a | 858 571±64 c |
NS | 353.17±12.86 b | 126.00±4.00 a | 84.93±3.81 a | 24.86±1.24 a | 8 944±144 b |
NSJ | 382.19±9.02 a | 128.14±3.61 a | 82.97±1.95 a | 24.63±0.34 a | 8 998±90 ab |
NSF | 352.50±13.26 b | 125.67±2.52 a | 88.87±1.85 a | 24.54±0.23 a | 9 271±169 a |
表3 不同处理对水稻产量及其构成因素的影响
Table 3 Effect of different treatments on rice yield and its components
处理 | 穗数 | 穗粒数 | 结实率 | 千粒重 | 产量 |
---|---|---|---|---|---|
Treatment | Ear number/(104 hm-2) | Grains per spike | Filled-grain percentage/% | 1 000-kernel weigh/g | Yield/(kg∙hm-2) |
CK | 368.85±3.41 ab | 123.52±5.29 a | 81.33±3.16 a | 24.43±0.52 a | 8 351±150 c |
N | 351.50±12.51 b | 124.33±2.52 a | 82.48±2.86 a | 25.68±1.31 a | 858 571±64 c |
NS | 353.17±12.86 b | 126.00±4.00 a | 84.93±3.81 a | 24.86±1.24 a | 8 944±144 b |
NSJ | 382.19±9.02 a | 128.14±3.61 a | 82.97±1.95 a | 24.63±0.34 a | 8 998±90 ab |
NSF | 352.50±13.26 b | 125.67±2.52 a | 88.87±1.85 a | 24.54±0.23 a | 9 271±169 a |
[1] | 周镕基, 皮修平. 供给侧视角下农业“悖论”的成因及其对策[J]. 湖南师范大学社会科学学报, 2017, 46(1): 97-102. |
ZHOU R J, PI X P. Causes and solutions of agricultural “paradox” in the perspective of supply side[J]. Journal of Social Science of Hunan Normal University, 2017, 46(1): 97-102. (in Chinese with English abstract) | |
[2] | 2019年全国耕地质量等级情况公报[EB/OL]. (2020-05-06) [2021-07-03]. http://www.moa.gov.cn/nybgb/2020/202004/202005/t20200506_6343095.htm . |
[3] | 冯书珍, 陈香碧, 何寻阳, 等. 不同土地利用方式及施肥措施对红壤木质素积累特性的影响[J]. 农业环境科学学报, 2015, 34(9): 1761-1768. |
FENG S Z, CHEN X B, HE X Y, et al. Effects of land use and fertilization on lignin accumulation in red soil[J]. Journal of Agro-Environment Science, 2015, 34(9): 1761-1768. (in Chinese with English abstract) | |
[4] | 沈仁芳, 王超, 孙波. “藏粮于地、藏粮于技”战略实施中的土壤科学与技术问题[J]. 中国科学院院刊, 2018, 33(2): 135-144. |
SHEN R F, WANG C, SUN B. Soil related scientific and technological problems in implementing strategy of “storing grain in land and technology”[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 135-144. (in Chinese with English abstract) | |
[5] | 冯兆滨, 王萍, 刘秀梅, 等. 我国红壤改良利用技术研究现状与展望[J]. 江西农业学报, 2017, 29(8): 57-61. |
FENG Z B, WANG P, LIU X M, et al. Research progress and perspective of red soil improvement and utilization technologies in China[J]. Acta Agriculturae Jiangxi, 2017, 29(8): 57-61. (in Chinese with English abstract) | |
[6] | 杨永森, 段雷, 靳腾, 等. 石灰石和菱镁矿对酸化森林土壤修复作用的研究[J]. 环境科学, 2006, 27(9): 1878-1883. |
YANG Y S, DUAN L, JIN T, et al. Effect of limestone and magnesite application on remediation of acidified forest soil in Chongqing, China[J]. Environmental Science, 2006, 27(9): 1878-1883. (in Chinese with English abstract) | |
[7] |
JANNIN L, ARKOUN M, OURRY A, et al. Microarray analysis of humic acid effects on Brassica napus growth: involvement of N, C and S metabolisms[J]. Plant and Soil, 2012, 359(1/2): 297-319.
DOI URL |
[8] | 吕波, 王宇函, 夏浩, 等. 不同改良剂对黄棕壤和红壤上白菜生长及土壤肥力影响的差异[J]. 中国农业科学, 2018, 51(22): 4306-4315. |
LÜ B, WANG Y H, XIA H, et al. Effects of biochar and other amendments on the cabbage growth and soil fertility in yellow-brown soil and red soil[J]. Scientia Agricultura Sinica, 2018, 51(22): 4306-4315. (in Chinese with English abstract) | |
[9] | 裴瑞杰, 袁天佑, 王俊忠, 等. 施用腐殖酸对夏玉米产量和氮效率的影响[J]. 中国农业科学, 2017, 50(11): 2189-2198. |
PEI R J, YUAN T Y, WANG J Z, et al. Effects of application of humic acid on yield, nitrogen use efficiency of summer maize[J]. Scientia Agricultura Sinica, 2017, 50(11): 2189-2198. (in Chinese with English abstract) | |
[10] | 王宇函, 姜存仓, 吕波, 等. 腐植酸钾对小白菜产量、生理特性及养分利用效率的影响[J]. 华中农业大学学报, 2018, 37(1): 58-63. |
WANG Y H, JIANG C C, LYU B, et al. Effects of potassium humate on yield, physiological characteristics and nutrient use efficiency of pakchoi[J]. Journal of Huazhong Agricultural University, 2018, 37(1): 58-63. (in Chinese with English abstract) | |
[11] | 潘剑玲, 代万安, 尚占环, 等. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展[J]. 中国生态农业学报, 2013, 21(5): 526-535. |
PAN J L, DAI W N, SHANG Z H, et al. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5): 526-535. (in Chinese with English abstract)
DOI URL |
|
[12] | 于美婷, 李春雅, 李华泰, 等. 秸秆还田对土壤理化性质影响的研究进展[J]. 江西农业学报, 2021, 33(1): 33-39. |
YU M T, LI C Y, LI H T, et al. Research progress in effect of straw returning on soil physical and chemical properties[J]. Acta Agriculturae Jiangxi, 2021, 33(1): 33-39. (in Chinese with English abstract) | |
[13] |
BLAZIER M A, PATTERSON W B, HOTARD S L. Straw harvesting, fertilization, and fertilizer type alter soil microbiological and physical properties in a loblolly pine plantation in the mid-south USA[J]. Biology and Fertility of Soils, 2008, 45(2): 145-153.
DOI URL |
[14] | 张静, 温晓霞, 廖允成, 等. 不同玉米秸秆还田量对土壤肥力及冬小麦产量的影响[J]. 植物营养与肥料学报, 2010, 16(3): 612-619. |
ZHANG J, WEN X X, LIAO Y C, et al. Effects of different amount of maize straw returning on soil fertility and yield of winter wheat[J]. Plant Nutrition and Fertilizer Science, 2010, 16(3): 612-619. (in Chinese with English abstract) | |
[15] | 吴梦洁, 严建立, 章明奎, 等. 肥料与调理剂配施对新垦红壤性状综合改良及大豆产量的影响[J]. 江西农业学报, 2020, 32(9): 68-72. |
WU M J, YAN J L, ZHANG M K, et al. Effects of fertilizer and conditioner on properties of newly cultivated red soil and soybean yield[J]. Acta Agriculturae Jiangxi, 2020, 32(9): 68-72. (in Chinese with English abstract) | |
[16] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[17] |
GARLAND J L, MILLS A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359.
DOI URL |
[18] |
BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917.
DOI PMID |
[19] | QASWAR M, DONGCHU L, JING H, et al. Interaction of liming and long-term fertilization increased crop yield and phosphorus use efficiency (PUE) through mediating exchangeable cations in acidic soil under wheat-maize cropping system[J]. Scientific Reports, 2020, 10: 19828. |
[20] | 张晶晶. 不同团聚体土壤秸秆降解及其微生物过程研究[D]. 杨凌: 西北农林科技大学, 2020. |
ZHANG J J. Study on the straw degradation and microbial process of different aggregates soil[D]. Yangling: Northwest A & F University, 2020. (in Chinese with English abstract) | |
[21] | CAI Z J, WANG B R, ZHANG L, et al. Striking a balance between N sources: mitigating soil acidification and accumulation of phosphorous and heavy metals from manure[J]. Science of the Total Environment, 2021, 754: 142189. |
[22] |
HOWELL D M, MACKENZIE M D. Using bioavailable nutrients and microbial dynamics to assess soil type and placement depth in reclamation[J]. Applied Soil Ecology, 2017, 116: 87-95.
DOI URL |
[23] |
MACDONALD E, QUIDEAU S, LANDHÄUSSER S. Rebuilding boreal forest ecosystems after industrial disturbance[M]//VITT D, BHATTI J. Restoration and reclamation of boreal ecosystems: attaining sustainable development. Cambridge: Cambridge University Press, 2012.
DOI URL |
XIANG J L, JIN J, LIU Q, et al. Alkalinity gradients in grasslands alter soil bacterial community composition and function[J]. Soil Science Society of America Journal, 2021, 85(2): 286-298. | |
[24] |
PENG C J, LAI S S, LUO X S, et al. Effects of long term rice straw application on the microbial communities of rapeseed rhizosphere in a paddy-upland rotation system[J]. Science of the Total Environment, 2016, 557/558: 231-239.
DOI URL |
[25] | 李涛, 何春娥, 葛晓颖, 等. 秸秆还田施氮调节碳氮比对土壤无机氮、酶活性及作物产量的影响[J]. 中国生态农业学报, 2016, 24(12): 1633-1642. |
LI T, HE C E, GE X Y, et al. Responses of soil mineral N contents, enzyme activities and crop yield to different C/N ratio mediated by straw retention and N fertilization[J]. Chinese Journal of Eco-Agriculture, 2016, 24(12): 1633-1642. (in Chinese with English abstract) | |
[26] |
ZHANG M Y, MUHAMMAD R, ZHANG L, et al. Investigating the effect of biochar and fertilizer on the composition and function of bacteria in red soil[J]. Applied Soil Ecology, 2019, 139: 107-116.
DOI URL |
[1] | 贾生强, 范惠珊, 陈喜靖, 喻曼, 沈阿林, 苏瑶. 长期秸秆还田下土壤反硝化细菌群落的有机碳驱动机制[J]. 浙江农业学报, 2021, 33(9): 1686-1699. |
[2] | 刘根红, 薛银鑫, 张倩, 周佳瑞, 买小凤. 滴灌条件下不同耕深及秸秆还田量对玉米生长的影响[J]. 浙江农业学报, 2021, 33(1): 8-17. |
[3] | 潘俊峰, 钟旭华, 黄农荣, 刘彦卓, 田卡, 梁开明, 彭碧琳, 傅友强, 胡香玉. 不同栽培模式对华南双季晚稻产量和氮肥利用率的影响[J]. 浙江农业学报, 2019, 31(6): 857-868. |
[4] | 邹传, 郭彬, 林义成, 傅庆林, 刘琛, 丁能飞, 李凝玉, 李华. 不同粒径腐殖酸颗粒对土壤有效态镉的影响[J]. 浙江农业学报, 2019, 31(4): 616-623. |
[5] | 王保君, 程旺大, 陈贵, 沈亚强, 张红梅. 秸秆还田配合氮肥减量对稻田土壤养分、碳库及水稻产量的影响[J]. 浙江农业学报, 2019, 31(4): 624-630. |
[6] | 王青霞, 陈喜靖, 喻曼, 沈阿林. 秸秆还田对稻田氮循环微生物及功能基因影响研究进展[J]. 浙江农业学报, 2019, 31(2): 333-342. |
[7] | 汪峰, 谌江华, 孙梅梅, 柴伟纲, 姚红燕, 戴瑶璐, 张玉屏, 朱德峰, 陈若霞. 甬优系列籼粳杂交稻株高变化对氮素利用率的影响[J]. 浙江农业学报, 2019, 31(1): 1-10. |
[8] | 罗原骏, 蒲玉琳, 龙高飞, 叶春, 朱波. 施肥方式对土壤活性有机碳及碳库管理指数的影响[J]. 浙江农业学报, 2018, 30(8): 1389-1397. |
[9] | 胡心意, 傅庆林, 刘琛, 丁能飞, 林义成. 秸秆还田和耕作深度对稻田耕层土壤的影响[J]. 浙江农业学报, 2018, 30(7): 1202-1210. |
[10] | 赵越, 罗志军, 赵杰, 江春燕, 曹丽萍. 南方丘陵区耕地土壤养分空间特征及其影响因素[J]. 浙江农业学报, 2018, 30(6): 1035-1043. |
[11] | 王桂跃, 苏婷, 韩海亮, 谭禾平, 包斐, 赵福成. 长期施肥对水田和旱地土壤微生物群落结构、活性碳氮及酶活性的影响[J]. 浙江农业学报, 2018, 30(5): 817-824. |
[12] | 萨如拉, 杨恒山, 高聚林, 范富, 张瑞富, 刘晶, 吴帅. 玉米秸秆还田模式对土壤肥力和玉米产量的影响[J]. 浙江农业学报, 2018, 30(2): 268-274. |
[13] | 陈喜靖, 喻曼, 王强, 李华, 苏瑶, 高佳, 李国安, 李建强, 沈阿林. 浙江省稻田系统秸秆还田问题及对策[J]. 浙江农业学报, 2018, 30(10): 1765-1774. |
[14] | 王宏燕, 孙岩, 于军, 李思萌, 袁佳慧, 孟雨田, 赵伟, 李晓庆. 有机种植对盐碱土主要理化性质的影响[J]. 浙江农业学报, 2017, 29(9): 1544-1548. |
[15] | 刘芳, 韩丹, 赵铭钦, 李小勇, 管成伟. 微生物菌剂配施腐殖酸钾对植烟土壤改良及烤烟经济效益的影响[J]. 浙江农业学报, 2017, 29(7): 1064-1069. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||