浙江农业学报 ›› 2022, Vol. 34 ›› Issue (11): 2368-2378.DOI: 10.3969/j.issn.1004-1524.2022.11.06
王慧慧1,2(), 冯茜莉1,2, 汪梦竹1,2, 赵泽阳1,2, 李易聪1,2, 蒲飞洋1,2, 马鹏1,2, 李勇3, 龚真莉3, 马忠仁1, 马晓霞1,*(
)
收稿日期:
2021-10-28
出版日期:
2022-11-25
发布日期:
2022-11-29
通讯作者:
马晓霞
作者简介:
*马晓霞,E-mail: maxiaoxia956@163.com基金资助:
WANG Huihui1,2(), FENG Xili1,2, WANG Mengzhu1,2, ZHAO Zeyang1,2, LI Yicong1,2, PU Feiyang1,2, MA Peng1,2, LI Yong3, GONG Zhenli3, MA Zhongren1, MA Xiaoxia1,*(
)
Received:
2021-10-28
Online:
2022-11-25
Published:
2022-11-29
Contact:
MA Xiaoxia
摘要:
通过病毒分离培养技术,从牦牛血清中分离获得一株致细胞病变的牛病毒性腹泻病毒(BVDV),命名为GSTZ毒株。经电镜观察,GSTZ毒株的直径在50~60 nm。按Karber法测算,该病毒滴度为5.0×106.5 mL-1[以组织半数感染量(TCID50)计]。利用反转录PCR(RT-PCR)测定GSTZ毒株的完整开放阅读框(ORF),全长11 691 nt,将其与参考毒株ORF在核酸序列和同义密码子使用模式等方面进行分析,确定GSTZ毒株在遗传学特性上属于基因1型家族成员。在GSTZ毒株的完整ORF中,A+U的出现频率要高于G+C,而且,病毒同义密码子的使用模式体现出对U/A结尾同义密码子使用偏嗜性高的遗传学特征。GSTZ毒株明显降低了使用含有CpG二联核苷酸的同义密码子的频率。这有助于降低病毒对宿主细胞免疫系统的刺激强度,从而促进病毒的复制增殖。研究成果可为进一步研究BVDV的相关分子机制提供试验材料,并为BVDV不同基因型的抗原关系分析与BVDV疫苗的研制奠定基础。
中图分类号:
王慧慧, 冯茜莉, 汪梦竹, 赵泽阳, 李易聪, 蒲飞洋, 马鹏, 李勇, 龚真莉, 马忠仁, 马晓霞. 一株牦牛源牛病毒性腹泻病毒毒株的分离鉴定及其遗传特性分析[J]. 浙江农业学报, 2022, 34(11): 2368-2378.
WANG Huihui, FENG Xili, WANG Mengzhu, ZHAO Zeyang, LI Yicong, PU Feiyang, MA Peng, LI Yong, GONG Zhenli, MA Zhongren, MA Xiaoxia. Isolation, identification and analyses for genetic features of one bovine viral diarrhea virus strain from yak[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2368-2378.
引物 Primers | 正向引物序列 Forward primer sequences(5'→3') | 反向引物序列 Reverse primer sequences(5'→3') | 产物长度 Product length/bp |
---|---|---|---|
BVDV1 | CCACCCACTACAAAGAGCAG | CACCGTAGGTATGTTTCAGATTAG | 541 |
BVDV2 | GATAGCAGGACTAAACCACC | CCATGTAGGCTCCTATTGAC | 293 |
BVDV3 | AACAGACCCACGCTACTGA | CCTGCCCAACTTCTTCAAAT | 728 |
BVDV4 | CGAAAGCCTTACCACCGTCTG | CGCCCTTTAGGAATCTGTAACCAC | 578 |
BVDV5 | AACTTTAACATTGTTGGTGGCT | CCCTGGGTGTAGTTCCTCTT | 1 283 |
BVDV6 | CATCATACGGATATTTCTGCC | TTCCTCTATTGGGTGCTTTT | 221 |
BVDV7 | TTGTAAAGTCCCAAGCAGAA | AGTCCATACCCAGTAGTTCG | 954 |
BVDV8 | GCAGCAGTTGATTTGGTAGT | GTTCGGGTTATTGTCAGCAT | 1 638 |
BVDV9 | GCGGAAGGGTAGTTGGTAGA | GCAAGTCCTCGGAGATGAGC | 1 233 |
BVDV10 | AAAGCAAGTGATGGGTCTGT | ACTGGAGGTGGGTGGTATCT | 158 |
BVDV11 | GGAAAGGGAAGAGTGATGGA | AGCCTGGTCAGGTTGGAGAT | 1 069 |
BVDV12 | TGGATTAGATGATGGCAGTT | TTTATTTGATGTTTGGTGGG | 586 |
BVDV13 | TATCGGAGAAATCCAGAAGT | TGGATTAGATGAGGCAGTT | 449 |
表1 引物序列
Table 1 The sequences of primers
引物 Primers | 正向引物序列 Forward primer sequences(5'→3') | 反向引物序列 Reverse primer sequences(5'→3') | 产物长度 Product length/bp |
---|---|---|---|
BVDV1 | CCACCCACTACAAAGAGCAG | CACCGTAGGTATGTTTCAGATTAG | 541 |
BVDV2 | GATAGCAGGACTAAACCACC | CCATGTAGGCTCCTATTGAC | 293 |
BVDV3 | AACAGACCCACGCTACTGA | CCTGCCCAACTTCTTCAAAT | 728 |
BVDV4 | CGAAAGCCTTACCACCGTCTG | CGCCCTTTAGGAATCTGTAACCAC | 578 |
BVDV5 | AACTTTAACATTGTTGGTGGCT | CCCTGGGTGTAGTTCCTCTT | 1 283 |
BVDV6 | CATCATACGGATATTTCTGCC | TTCCTCTATTGGGTGCTTTT | 221 |
BVDV7 | TTGTAAAGTCCCAAGCAGAA | AGTCCATACCCAGTAGTTCG | 954 |
BVDV8 | GCAGCAGTTGATTTGGTAGT | GTTCGGGTTATTGTCAGCAT | 1 638 |
BVDV9 | GCGGAAGGGTAGTTGGTAGA | GCAAGTCCTCGGAGATGAGC | 1 233 |
BVDV10 | AAAGCAAGTGATGGGTCTGT | ACTGGAGGTGGGTGGTATCT | 158 |
BVDV11 | GGAAAGGGAAGAGTGATGGA | AGCCTGGTCAGGTTGGAGAT | 1 069 |
BVDV12 | TGGATTAGATGATGGCAGTT | TTTATTTGATGTTTGGTGGG | 586 |
BVDV13 | TATCGGAGAAATCCAGAAGT | TGGATTAGATGAGGCAGTT | 449 |
图1 RT-PCR扩增结果 M,DL2000 DNA marker;N,阴性对照;1~16,血清样品。
Fig.1 Amplification result of RT-PCR M, DL2000 DNA marker; N, Negative control; 1-16, Serum samples.
图2 GSTZ在MDBK细胞上的病变情况(5×) A,阴性对照的正常MDBK细胞(5 d);B,感染分离株后MDBK细胞发生明显病变(5 d)。
Fig.2 Cytopathogenic effects caused by the isolated strain on MDBK cells(5×) A, Cell culture after incubation for 5 days in the negative control; B, MDBK cells exhibited cytopathogenic effects after infection with the isolated strain for 5 days.
图3 接种分离株5 d后纯化MDBK细胞培养物在电镜下观察到的病毒粒子 在电子显微镜下可以观察到数个直径在50~60 nm的病毒粒子(白箭头所示)。
Fig.3 Virus particles observed under electron microscope in purified MDBK cell cultures inoculated with isolated strain after 5 days Several 50-60 nm viral particles (white arrows show) were observed under electron microscopy.
图4 GSTZ分离株基因组的RT-PCR扩增结果 M,DL2000 DNA marker;1~13,RT-PCR扩增产物(分别对应于表1中的引物BVDV1—BVDV13)。
Fig.4 RT-PCR amplification result of GSTZ strain genome M, DL2000 DNA marker; 1-13, RT-PCR amplification product (in accordance with the primers BVDV1-BVDV13 in Table 1).
图5 GSTZ分离株的基因组系统发育分析 gt1和gt2别表示基因1型和基因2型。
Fig.5 Phylogenetic analysis of GSTZ isolates gt1 and gt2 represents genotype 1 and genotype 2, respectively.
同义密码子(氨基酸) Synonymous codon (Amino acid) | RSCU | 同义密码子(氨基酸) Synonymous codon (Amino acid) | RSCU |
---|---|---|---|
UUU(F) | 0.98 | GCC(A) | 1.24 |
UUC(F) | 1.02 | GCA(A) | 1.52 |
UUA(L) | 0.90 | GCG(A) | 0.31 |
UUG(L) | 1.34 | UAU(Y) | 0.92 |
CUU(L) | 0.50 | UAC(Y) | 1.08 |
CUC(L) | 0.53 | CAU(H) | 0.72 |
CUA(L) | 1.34 | CAC(H) | 1.27 |
CUG(L) | 1.39 | CAA(Q) | 0.97 |
AUU(I) | 0.62 | CAG(Q) | 1.03 |
AUC(I) | 0.69 | AAU(N) | 0.86 |
AUA(I) | 1.69 | AAC(N) | 1.14 |
GUU(V) | 0.59 | AAA(K) | 0.99 |
GUC(V) | 1.01 | AAG(K) | 1.01 |
GUA(V) | 0.95 | GAU(D) | 1.14 |
GUG(V) | 1.45 | GAC(D) | 0.86 |
UCU(S) | 0.79 | GAA(E) | 1.06 |
UCC(S) | 0.71 | GAG(E) | 0.94 |
UCA(S) | 1.74 | UGU(C) | 1.13 |
UCG(S) | 0.09 | UGC(C) | 0.87 |
AGU(S) | 1.29 | CGU(R) | 0.06 |
AGC(S) | 1.38 | CGC(R) | 0.19 |
CCU(P) | 1.01 | CGA(R) | 0.19 |
CCC(P) | 0.92 | CGG(R) | 0.30 |
CCA(P) | 1.66 | AGA(R) | 2.70 |
CCG(P) | 0.41 | AGG(R) | 2.56 |
ACU(T) | 0.91 | GGU(G) | 0.82 |
ACC(T) | 1.04 | GGC(G) | 0.72 |
ACA(T) | 1.58 | GGA(G) | 0.95 |
ACG(T) | 0.46 | GGG(G) | 1.51 |
GCU(A) | 0.93 |
表2 BVDV GSTZ毒株同义密码子使用模式的遗传特征
Table 2 Synonymous codon usage patterns of BVDV GSTZ strain
同义密码子(氨基酸) Synonymous codon (Amino acid) | RSCU | 同义密码子(氨基酸) Synonymous codon (Amino acid) | RSCU |
---|---|---|---|
UUU(F) | 0.98 | GCC(A) | 1.24 |
UUC(F) | 1.02 | GCA(A) | 1.52 |
UUA(L) | 0.90 | GCG(A) | 0.31 |
UUG(L) | 1.34 | UAU(Y) | 0.92 |
CUU(L) | 0.50 | UAC(Y) | 1.08 |
CUC(L) | 0.53 | CAU(H) | 0.72 |
CUA(L) | 1.34 | CAC(H) | 1.27 |
CUG(L) | 1.39 | CAA(Q) | 0.97 |
AUU(I) | 0.62 | CAG(Q) | 1.03 |
AUC(I) | 0.69 | AAU(N) | 0.86 |
AUA(I) | 1.69 | AAC(N) | 1.14 |
GUU(V) | 0.59 | AAA(K) | 0.99 |
GUC(V) | 1.01 | AAG(K) | 1.01 |
GUA(V) | 0.95 | GAU(D) | 1.14 |
GUG(V) | 1.45 | GAC(D) | 0.86 |
UCU(S) | 0.79 | GAA(E) | 1.06 |
UCC(S) | 0.71 | GAG(E) | 0.94 |
UCA(S) | 1.74 | UGU(C) | 1.13 |
UCG(S) | 0.09 | UGC(C) | 0.87 |
AGU(S) | 1.29 | CGU(R) | 0.06 |
AGC(S) | 1.38 | CGC(R) | 0.19 |
CCU(P) | 1.01 | CGA(R) | 0.19 |
CCC(P) | 0.92 | CGG(R) | 0.30 |
CCA(P) | 1.66 | AGA(R) | 2.70 |
CCG(P) | 0.41 | AGG(R) | 2.56 |
ACU(T) | 0.91 | GGU(G) | 0.82 |
ACC(T) | 1.04 | GGC(G) | 0.72 |
ACA(T) | 1.58 | GGA(G) | 0.95 |
ACG(T) | 0.46 | GGG(G) | 1.51 |
GCU(A) | 0.93 |
图6 基于RSCU数据主成分分析的GSTZ毒株ORF同义密码子使用模式遗传进化解析
Fig.6 Visualization of genetic diversity for GSTZ ORF at synonymous codon usage pattern based on RSCU data via principal component analysis
[1] | 温树波, 宋扬, 蒙小刚, 等. 一株进口胎牛血清源BVDV毒株的分离与鉴定[J]. 中国病原生物学杂志, 2021, 16(7): 743-746. |
WEN S B, SONG Y, MENG X G, et al. Isolation and identification of a BVDV strain from imported fetal bovine serum[J]. Journal of Pathogen Biology, 2021, 16(7): 743-746. (in Chinese with English abstract) | |
[2] | 才冬杰. 牛病毒性腹泻病毒基因组分析及LDLR敲除对其侵染牛肾细胞的影响[D]. 北京: 中国农业大学, 2018. |
CAI D J. Genomic analysis of bovine viral diarrhea virus and effects of LDLR knockout on its infection of MDBK cells[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract) | |
[3] |
YEŞILBAĞ K, ALPAY G, BECHER P. Variability and global distribution of subgenotypes of bovine viral diarrhea virus[J]. Viruses, 2017, 9(6): 128.
DOI URL |
[4] |
LI Y P, LIU T L, CHEN G L, et al. Th17 cell differentiation induced by cytopathogenic biotype BVDV-2 in bovine PBLCs[J]. BMC Genomics, 2021, 22(1): 884.
DOI PMID |
[5] |
DARWEESH M F, RAJPUT M K S, BRAUN L J, et al. Characterization of the cytopathic BVDV strains isolated from 13 mucosal disease cases arising in a cattle herd[J]. Virus Research, 2015, 195: 141-147.
DOI PMID |
[6] | RADOSTITS O M, LITTLEJOHNS I R. New concepts in the pathogenesis, diagnosis and control of diseases caused by the bovine viral diarrhea virus[J]. The Canadian Veterinary Journal, 1988, 29(6): 513-528. |
[7] | 李艳萍, 王立群, 李慧霞, 等. 一株源于商品胎牛血清的BVDV-2型的分离鉴定及基因组序列分析[J]. 畜牧兽医学报, 2020, 51(2): 320-328. |
LI Y P, WANG L Q, LI H X, et al. Identification and complete genome sequencing analysis of a cytopathic BVDV-2 from commercial fetal bovine serum[J]. Chinese Journal of Animal and Veterinary Sciences, 2020, 51(2): 320-328. (in Chinese with English abstract) | |
[8] | 刘泽余, 刘占悝, 李智杰, 等. 牛病毒性腹泻病毒分子机制的研究进展[J]. 当代畜牧, 2019(11): 17-21. |
LIU Z Y, LIU Z K, LI Z J, et al. Molecular mechanism of bovine viral diarrhea virus[J]. Contemporary Animal Husbandry, 2019(11): 17-21. (in Chinese with English abstract) | |
[9] | 韩慧, 郑源强, 石艳春. 牛病毒性腹泻病毒研究进展[J]. 畜禽业, 2019, 30(7): 6-7. |
HAN H, ZHENG Y Q, SHI Y C. Research progress on bovine viral diarrhea virus[J]. Livestock and Poultry Industry, 2019, 30(7): 6-7. (in Chinese with English abstract) | |
[10] | 陈昕迪, 郝永清. BVDV E2蛋白的原核表达及间接ELISA方法的建立[J]. 中国动物传染病学报, 2021, 29(4): 74-80. |
CHEN X D, HAO Y Q. Prokaryotic expression of bovine viral diarrhea virus E2 protein and development of an indirect ELISA method[J]. Chinese Journal of Animal Infectious Diseases, 2021, 29(4): 74-80. (in Chinese with English abstract) | |
[11] |
GIAMMARIOLI M, CEGLIE L, ROSSI E, et al. Increased genetic diversity of BVDV-1: recent findings and implications thereof[J]. Virus Genes, 2015, 50(1): 147-151.
DOI PMID |
[12] |
ALKHERAIF A A, TOPLIFF C L, REDDY J, et al. Type 2 BVDV Npro suppresses IFN-1 pathway signaling in bovine cells and augments BRSV replication[J]. Virology, 2017, 507: 123-134.
DOI URL |
[13] | 钟发刚, 黄新, 王新华, 等. 牛病毒腹泻病毒(BVDV)E2重组蛋白ELISA检测方法的初步建立[J]. 新疆农业科学, 2010, 47(4): 761-764. |
ZHONG F G, HUANG X, WANG X H, et al. Establishment of bovine viral diarrhea virus recombinant protein ELISA assay[J]. Xinjiang Agricultural Sciences, 2010, 47(4): 761-764. (in Chinese with English abstract) | |
[14] | 龙木措. 牛病毒性腹泻病毒的流行病学调查[J]. 今日畜牧兽医, 2019, 35(5): 15. |
LONG M C. Epidemiological survey of bovine viral diarrhea virus[J]. Today Animay Husbandry and Veterinary Medicine, 2019, 35(5): 15. (in Chinese) | |
[15] | 陈新诺, 张朝辉, 徐林, 等. 青藏高原牦牛感染BVDV和BEV的分子流行病学调查[J]. 动物医学进展, 2016, 37(9): 35-38. |
CHEN X N, ZHANG C H, XU L, et al. Investigation on molecular epidemiology of BVDV and BEV infections in yaks of Qinghai-Tibetan Plateau[J]. Progress in Veterinary Medicine, 2016, 37(9): 35-38. (in Chinese with English abstract) | |
[16] | 普浩宇, 亐开兴, 杨贵伟, 等. 牛病毒性腹泻病毒基因2型云南株的分离与鉴定[J]. 中国兽医学报, 2021, 41(10): 1922-1929. |
PU H Y, QU K X, YANG G W, et al. Isolation and identification of Yunnan strain of bovine viral diarrhea virus-2[J]. Chinese Journal of Veterinary Science, 2021, 41(10): 1922-1929. (in Chinese with English abstract) | |
[17] |
SHARP P M, TUOHY T M F, MOSURSKI K R. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes[J]. Nucleic Acids Research, 1986, 14(13): 5125-5143.
DOI URL |
[18] |
MA X X, CHANG Q Y, MA P, et al. Analyses of nucleotide, codon and amino acids usages between peste des petits ruminants virus and rinderpest virus[J]. Gene, 2017, 637: 115-123.
DOI URL |
[19] |
MA X X, MA P, CHANG Q Y, et al. The analyses of relationships among nucleotide, synonymous codon and amino acid usages for E2 gene of bovine viral diarrhea virus[J]. Gene, 2018, 660: 62-67.
DOI URL |
[20] |
SANJUÁN R, DOMINGO-CALAP P. Mechanisms of viral mutation[J]. Cellular and Molecular Life Sciences: CMLS, 2016, 73(23): 4433-4448.
PMID |
[21] |
MANRUBIA S C. Modelling viral evolution and adaptation: challenges and rewards[J]. Current Opinion in Virology, 2012, 2(5): 531-537.
DOI PMID |
[22] |
KÖVÁGÓ C, HORNYÁK Á, KÉKESI V, et al. Demonstration of homologous recombination events in the evolution of bovine viral diarrhoea virus by in silico investigations[J]. Acta Veterinaria Hungarica, 2016, 64(3): 401-414.
PMID |
[23] |
BECHER P, TAUTZ N. RNA recombination in pestiviruses: cellular RNA sequences in viral genomes highlight the role of host factors for viral persistence and lethal disease[J]. RNA Biology, 2011, 8(2): 216-224.
PMID |
[24] | 杨秀玲, 李志强, 罗永珍, 等. 青海西宁牦牛病毒性腹泻疫病病原学调查与分析[J]. 中国兽医杂志, 2019, 55(8): 8-12. |
YANG X L, LI Z Q, LUO Y Z, et al. Etiological investigation and analysis of yak bovine viral diarrhea in Xining, Qinghai[J]. Chinese Journal of Veterinary Medicine, 2019, 55(8): 8-12. (in Chinese with English abstract) | |
[25] | 杞艳萍. 西部四省(区)BVDV的流行病学调查及分离鉴定[D]. 杨凌: 西北农林科技大学, 2021. |
QI Y P. Epidemiological investigation and identification of BVDV in four western provinces(regions)[D]. Yangling: Northwest A & F University, 2021. (in Chinese with English abstract) | |
[26] | 赵玉宾. 新疆南疆地区马鹿感染BVDV流行病学调查[D]. 阿拉尔: 塔里木大学, 2021. |
ZHAO Y B. Epidemiological investigation of BVDV infection in red deer in southern Xinjiang[D]. Alaer: Tarim University, 2021. (in Chinese with English abstract) | |
[27] |
WANG L N, WU X M, WANG C B, et al. Origin and transmission of bovine viral diarrhea virus type 1 in China revealed by phylodynamic analysis[J]. Research in Veterinary Science, 2020, 128: 162-169.
DOI PMID |
[28] | 向文杰, 林俊, 宋文凤, 等. 3株牛病毒性腹泻病毒的分离鉴定及其基因分型[J]. 中国预防兽医学报, 2019, 41(4): 422-425. |
XIANG W J, LIN J, SONG W F, et al. Identification and genotyping of three strains of bovine viral diarrhea virus[J]. Chinese Journal of Preventive Veterinary Medicine, 2019, 41(4): 422-425. (in Chinese with English abstract) | |
[29] | 王应龙, 徐尚荣, 张学忠, 等. 藏羊源牛病毒性腹泻病毒的分离鉴定及生物学特性分析[J]. 黑龙江畜牧兽医, 2019(7): 87-90. |
WANG Y L, XU S R, ZHANG X Z, et al. Isolation, identification and biological characteristics analysis of bovine viral diarrhea virus from Tibetan sheep[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(7): 87-90. (in Chinese) | |
[30] | 朱广艺, 王哲红, 赵玉宾, 等. 新疆南疆地区某规模奶牛场牛病毒性腹泻抗原检测[J]. 中国动物检疫, 2019, 36(9): 9-11. |
ZHU G Y, WANG Z H, ZHAO Y B, et al. Antigen detection of bovine viral diarrhea in a dairy farm in southern Xinjiang[J]. China Animal Health Inspection, 2019, 36(9): 9-11. (in Chinese with English abstract) | |
[31] | 刘泽余, 李健友, 刘占悝, 等. 吉林省牛病毒性腹泻病毒流行病学调查分析[J]. 黑龙江畜牧兽医, 2019(24): 62-67. |
LIU Z Y, LI J Y, LIU Z K, et al. Epidemiological investigation and analysis of bovine viral diarrhea virus in Jilin Province[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(24): 62-67. (in Chinese with English abstract) | |
[32] | 赵娜. 宁夏平吉堡地区奶牛病毒性腹泻病的血清学调查研究[J]. 甘肃畜牧兽医, 2020, 50(1): 51-53. |
ZHAO N. Serological investigation of bovine viral diarrhea in Pingjibao area of Ningxia[J]. Gansu Animal Husbandry and Veterinary, 2020, 50(1): 51-53. (in Chinese) | |
[33] | 陶洁, 洪天旗, 王亨, 等. 我国牛病毒性腹泻流行现状与防控策略[J]. 微生物学通报, 2019, 46(7): 1850-1858. |
TAO J, HONG T Q, WANG H, et al. Epidemic status and control strategies of bovine viral diarrhea in China[J]. Microbiology China, 2019, 46(7): 1850-1858. (in Chinese with English abstract) | |
[34] |
DENG M L, JI S K, FEI W T, et al. Prevalence study and genetic typing of bovine viral diarrhea virus (BVDV) in four bovine species in China[J]. PLoS One, 2015, 10(4): e0121718.
DOI URL |
[35] |
IKEMURA T. Codon usage and tRNA content in unicellular and multicellular organisms[J]. Molecular Biology and Evolution, 1985, 2(1): 13-34.
PMID |
[36] |
KHANDIA R, SINGHAL S, KUMAR U, et al. Analysis of nipah virus codon usage and adaptation to hosts[J]. Frontiers in Microbiology, 2019, 10: 886.
DOI PMID |
[37] |
BISWAS K K, PALCHOUDHURY S, CHAKRABORTY P, et al. Codon usage bias analysis of Citrus tristeza virus: higher Codon adaptation to Citrus reticulata host[J]. Viruses, 2019, 11(4): 331.
DOI URL |
[38] |
KRIEG A M. CpG motifs in bacterial DNA and their immune effects[J]. Annual Review of Immunology, 2002, 20: 709-760.
PMID |
[1] | 彭帅, 陈朗, 郑天宇, 陆会宁, 张丽, 刘丽霞. 大通牦牛TLR2基因SNP位点筛选及生物信息学分析[J]. 浙江农业学报, 2019, 31(8): 1280-1285. |
[2] | 唐天才, 刘城成, 袁东波, 郭莉, 侯巍, 莫茜, 阳爱国, 郝力力, 李锐. 四川石渠县牦牛源蜱感染巴尔通体的分子流行病学调查[J]. 浙江农业学报, 2019, 31(7): 1066-1072. |
[3] | 张康, 张璇, 闫遵祥, 王磊, 张凯, 张景艳, 罗永江, 仇正英, 薛欢, 李建喜. 牛病毒性腹泻病毒Core蛋白的原核表达及多克隆抗体制备[J]. 浙江农业学报, 2019, 31(11): 1819-1824. |
[4] | 张丽, 刘丽霞, 李强子, 陈红. 天祝白牦牛MSTN基因编码区克隆及生物信息学分析[J]. 浙江农业学报, 2017, 29(4): 618-624. |
[5] | 陈杰1,田知利1,胡江1,*,罗玉柱1,刘秀1,王继卿1,石红梅2,雷俊杰2. 牦牛CAPN1基因intron 1多态性及其与胴体和肉质性状的关联性[J]. 浙江农业学报, 2016, 28(8): 1315-. |
[6] | 郝力力, 李锐, 段玲, 贺亮. 四川红原县牦牛隐孢子虫感染情况分子流行病学调查[J]. 浙江农业学报, 2016, 28(11): 1842-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||