浙江农业学报 ›› 2023, Vol. 35 ›› Issue (7): 1699-1708.DOI: 10.3969/j.issn.1004-1524.20220867
查贵超1(), 孙向阳1,*(
), 李素艳1, 于雷2, 岳宗伟1, 王晨晨1, 魏宁娴1, 徐浠婕1
收稿日期:
2022-06-12
出版日期:
2023-07-25
发布日期:
2023-08-17
作者简介:
查贵超(1997—),男,安徽芜湖人,硕士研究生,研究方向为土壤生态。E-mail:2311064244@qq.com
通讯作者:
*孙向阳,E-mail:sunxy@bjfu.edu.cn
基金资助:
ZHA Guichao1(), SUN Xiangyang1,*(
), LI Suyan1, YU Lei2, YUE Zongwei1, WANG Chenchen1, WEI Ningxian1, XU Xijie1
Received:
2022-06-12
Online:
2023-07-25
Published:
2023-08-17
Contact:
SUN Xiangyang
摘要:
为探究北京市通州区绿地土壤有机碳(SOC)及其组分的含量与分布规律,以城市绿地、果园、苗圃、平原造林地4种典型绿地土壤为研究对象,基于化学组成和密度分组技术分析不同土层(0~20、20~40 cm)SOC、富里酸碳(FAC)、胡敏酸碳(HAC)、胡敏素碳(HC)、轻组有机碳(LFOC)和重组有机碳(HFOC)的含量及其分布特征,并结合相关性分析探究SOC与土壤理化因子的关系。结果表明:在0~40 cm土层内,不同绿地的SOC、FAC、HAC、HC、LFOC、HFOC含量分别为7.30~18.29、1.71~2.96、1.57~4.92、3.98~10.41、2.24~6.23、4.85~12.06 g·kg-1。在垂直分布上,SOC及其组分含量随土层深度的增加整体呈下降趋势。不同绿地0~40 cm土层的土壤有机碳密度为46.50~88.41 t·hm-2,以果园最高,且显著(P<0.05)高于其他绿地类型。SOC及其组分含量与总孔隙度、田间持水量、碱解氮、有效磷和速效钾呈极显著(P<0.01)正相关,与pH和土壤容重呈极显著(P<0.01)负相关。总体而言,通州区上述4种绿地的SOC及其组分含量具有明显的表聚性,以果园的固碳潜力最大。
中图分类号:
查贵超, 孙向阳, 李素艳, 于雷, 岳宗伟, 王晨晨, 魏宁娴, 徐浠婕. 北京市通州区不同绿地类型的土壤有机碳及其组分特征[J]. 浙江农业学报, 2023, 35(7): 1699-1708.
ZHA Guichao, SUN Xiangyang, LI Suyan, YU Lei, YUE Zongwei, WANG Chenchen, WEI Ningxian, XU Xijie. Characteristics of soil organic carbon and its components in different green space types in Tongzhou District of Beijing, China[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1699-1708.
样地编号 Sample plot No. | 绿地类型 Green space type | 地理坐标分布 Geographic coordinate distribution | 植被覆盖率 Vegetation coverage/% | 主要植被类型 Dominant vegetation |
---|---|---|---|---|
1~10 | 城市绿地 Urban green space | 116°39'45″~116°47'07″E, 39°48'53″~39°56'31″N | 35~55 | 碧桃(Amygdalus persica‘Duplex’Rehd.)、紫叶李(Prunus cerasifera Ehrhar f.)、银杏(Ginkgo biloba L.)、油松(Pinus tabuliformis Carrière) |
11~20 | 果园 Orchard | 116°41'40″~116°53'03″E, 39°40'41″~39°59'22″N | 60~75 | 葡萄(Vitis vinifera L.)、梨(Pyrus spp.)、樱桃[Cerasus pseudocerasus (Lindl.) G. Don]、苹果(Malus pumila Mill.)、碧桃(Amygdalus persica‘Duplex’Rehd.) |
21~30 | 苗圃 Nursery | 116°39'35″~116°54'19″E, 39°41'38″~39°47'26″N | 65~80 | 海棠[Malus spectabilis(Ait.) Borkh.]、油松(Pinus tabuliformis Carrière)、五角槭[Acer pictum subsp. mono (Maxim.) H. Ohashi]、紫叶李(Prunus cerasifera Ehrhar f.)、白蜡(Fraxinus chinensis Roxb.)、白皮松(Pinus bungeana Zucc. ex Endl.)、华山松(Pinus armandii Franch.) |
31~40 | 平原造林地 Plain plantation | 116°36'14″~116°54'28″E, 39°37'59″~40°00'58″N | 60~90 | 国槐(Sophora japonica L.)、海棠[Malus spectabilis(Ait.) Borkh.]、五角槭[Acer pictum subsp. mono (Maxim.) H. Ohashi]、碧桃(Amygdalus persica‘Duplex’Rehd.)、白蜡(Fraxinus chinensis Roxb.)、油松(Pinus tabuliformis Carrière)、毛白杨(Populus tomentosa Carrière) |
表1 样地基本概况
Table 1 Basic information of sample plots
样地编号 Sample plot No. | 绿地类型 Green space type | 地理坐标分布 Geographic coordinate distribution | 植被覆盖率 Vegetation coverage/% | 主要植被类型 Dominant vegetation |
---|---|---|---|---|
1~10 | 城市绿地 Urban green space | 116°39'45″~116°47'07″E, 39°48'53″~39°56'31″N | 35~55 | 碧桃(Amygdalus persica‘Duplex’Rehd.)、紫叶李(Prunus cerasifera Ehrhar f.)、银杏(Ginkgo biloba L.)、油松(Pinus tabuliformis Carrière) |
11~20 | 果园 Orchard | 116°41'40″~116°53'03″E, 39°40'41″~39°59'22″N | 60~75 | 葡萄(Vitis vinifera L.)、梨(Pyrus spp.)、樱桃[Cerasus pseudocerasus (Lindl.) G. Don]、苹果(Malus pumila Mill.)、碧桃(Amygdalus persica‘Duplex’Rehd.) |
21~30 | 苗圃 Nursery | 116°39'35″~116°54'19″E, 39°41'38″~39°47'26″N | 65~80 | 海棠[Malus spectabilis(Ait.) Borkh.]、油松(Pinus tabuliformis Carrière)、五角槭[Acer pictum subsp. mono (Maxim.) H. Ohashi]、紫叶李(Prunus cerasifera Ehrhar f.)、白蜡(Fraxinus chinensis Roxb.)、白皮松(Pinus bungeana Zucc. ex Endl.)、华山松(Pinus armandii Franch.) |
31~40 | 平原造林地 Plain plantation | 116°36'14″~116°54'28″E, 39°37'59″~40°00'58″N | 60~90 | 国槐(Sophora japonica L.)、海棠[Malus spectabilis(Ait.) Borkh.]、五角槭[Acer pictum subsp. mono (Maxim.) H. Ohashi]、碧桃(Amygdalus persica‘Duplex’Rehd.)、白蜡(Fraxinus chinensis Roxb.)、油松(Pinus tabuliformis Carrière)、毛白杨(Populus tomentosa Carrière) |
绿地类型 Green space type | 土层深度 Soil depth/cm | pH | 土壤容重 Soil bulk density/ (g·cm-3) | 总孔隙度 Total porosity/% | 田间持水量 Field capacity/% | 碱解氮 Alkali-hydrolyzed nitrogen/ (mg·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
城市绿地 | 0~20 | 8.33±0.05 | 1.36±0.03 | 48.79±1.06 | 29.72±1.78 | 51.10±6.54 | 13.76±1.70 | 150.83±11.67 |
Urban green space | 20~40 | 8.37±0.03 | 1.55±0.04 | 41.65±1.37 | 22.06±1.41 | 40.56±4.96 | 7.64±1.12 | 136.25±8.98 |
果园 | 0~20 | 8.04±0.06 | 1.28±0.05 | 51.56±1.76 | 31.61±2.21 | 100.96±12.96 | 112.72±11.30 | 247.08±17.55 |
Orchard | 20~40 | 8.13±0.05 | 1.54±0.07 | 41.98±2.52 | 23.15±2.27 | 55.20±8.38 | 58.52±7.54 | 175.13±14.05 |
苗圃 | 0~20 | 8.24±0.04 | 1.34±0.05 | 49.36±1.77 | 29.75±1.89 | 66.84±6.07 | 26.86±7.55 | 147.50±7.91 |
Nursery | 20~40 | 8.37±0.05 | 1.66±0.04 | 37.47±1.41 | 19.11±1.20 | 44.68±4.77 | 13.57±4.24 | 127.08±8.77 |
平原造林地 | 0~20 | 8.30±0.03 | 1.41±0.02 | 46.62±0.90 | 27.15±0.72 | 55.44±5.26 | 23.94±4.12 | 152.08±18.23 |
Plain plantation | 20~40 | 8.38±0.04 | 1.65±0.03 | 37.60±1.22 | 19.82±1.34 | 43.54±4.58 | 10.97±2.01 | 129.58±13.33 |
表2 不同绿地类型的土壤基本理化性质
Table 2 Soil physical and chemical properties of different green space types
绿地类型 Green space type | 土层深度 Soil depth/cm | pH | 土壤容重 Soil bulk density/ (g·cm-3) | 总孔隙度 Total porosity/% | 田间持水量 Field capacity/% | 碱解氮 Alkali-hydrolyzed nitrogen/ (mg·kg-1) | 有效磷 Available phosphorus/ (mg·kg-1) | 速效钾 Available potassium/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
城市绿地 | 0~20 | 8.33±0.05 | 1.36±0.03 | 48.79±1.06 | 29.72±1.78 | 51.10±6.54 | 13.76±1.70 | 150.83±11.67 |
Urban green space | 20~40 | 8.37±0.03 | 1.55±0.04 | 41.65±1.37 | 22.06±1.41 | 40.56±4.96 | 7.64±1.12 | 136.25±8.98 |
果园 | 0~20 | 8.04±0.06 | 1.28±0.05 | 51.56±1.76 | 31.61±2.21 | 100.96±12.96 | 112.72±11.30 | 247.08±17.55 |
Orchard | 20~40 | 8.13±0.05 | 1.54±0.07 | 41.98±2.52 | 23.15±2.27 | 55.20±8.38 | 58.52±7.54 | 175.13±14.05 |
苗圃 | 0~20 | 8.24±0.04 | 1.34±0.05 | 49.36±1.77 | 29.75±1.89 | 66.84±6.07 | 26.86±7.55 | 147.50±7.91 |
Nursery | 20~40 | 8.37±0.05 | 1.66±0.04 | 37.47±1.41 | 19.11±1.20 | 44.68±4.77 | 13.57±4.24 | 127.08±8.77 |
平原造林地 | 0~20 | 8.30±0.03 | 1.41±0.02 | 46.62±0.90 | 27.15±0.72 | 55.44±5.26 | 23.94±4.12 | 152.08±18.23 |
Plain plantation | 20~40 | 8.38±0.04 | 1.65±0.03 | 37.60±1.22 | 19.82±1.34 | 43.54±4.58 | 10.97±2.01 | 129.58±13.33 |
图2 不同绿地类型土壤有机碳及其组分的分布特征 柱上无相同大、小写字母的分别表示同一土层不同绿地类型和同一绿地类型不同土层间差异显著(P < 0.05)。下同。
Fig.2 Distribution characteristics of soil organic carbon and its components in different green space types Bars marked without the same uppercase and lowercase letters indicate significant differences within green spaces types in the same soil layer and differences within soil layers for the same green space type at P<0.05, respectively. The same as below.
绿地类型 Green space type | 土层深度 Soil depth/cm | (FAC/SOC)/% | (HAC/SOC)/% | (HC/SOC)/% | (LFOC/SOC)/% | (HFOC/SOC)/% |
---|---|---|---|---|---|---|
城市绿地 | 0~20 | 22.21±1.18 ABa | 23.04±0.91 Ba | 54.75±1.33 Aa | 32.61±2.32 Aa | 67.39±2.32 Aa |
Urban green space | 20~40 | 24.64±1.71 Aa | 21.55±1.59 Ba | 53.81±2.25 Aa | 30.76±1.47 Ba | 69.24±1.47 Aa |
果园Orchard | 0~20 | 16.17±0.67 Ca | 26.55±1.12 Aa | 57.28±1.15 Aa | 34.31±1.52 Aa | 65.69±1.52 Aa |
20~40 | 18.16±1.31 Ba | 27.71±2.52 Aa | 54.12±3.78 Aa | 29.55±2.44 Ba | 70.45±2.44 Aa | |
苗圃Nursery | 0~20 | 25.60±2.36 Aa | 18.92±1.54 Ca | 55.48±1.80 Aa | 33.22±3.35 Aa | 66.78±3.35 Aa |
20~40 | 23.85±2.41 Aa | 21.11±1.32 Ba | 55.04±2.17 Aa | 31.50±2.58 Ba | 68.50±2.58 Aa | |
平原造林地 | 0~20 | 18.80±1.28 BCb | 27.38±0.99 Aa | 53.82±1.02 Aa | 39.27±1.99 Aa | 60.73±1.99 Aa |
Plain plantation | 20~40 | 23.73±1.47 Aa | 25.45±1.88 ABa | 50.81±5.02 Aa | 37.45±2.51 Aa | 62.55±2.51 Ba |
表3 不同绿地类型各有机碳组分占比
Table 3 Proportion of organic carbon components in different green space types
绿地类型 Green space type | 土层深度 Soil depth/cm | (FAC/SOC)/% | (HAC/SOC)/% | (HC/SOC)/% | (LFOC/SOC)/% | (HFOC/SOC)/% |
---|---|---|---|---|---|---|
城市绿地 | 0~20 | 22.21±1.18 ABa | 23.04±0.91 Ba | 54.75±1.33 Aa | 32.61±2.32 Aa | 67.39±2.32 Aa |
Urban green space | 20~40 | 24.64±1.71 Aa | 21.55±1.59 Ba | 53.81±2.25 Aa | 30.76±1.47 Ba | 69.24±1.47 Aa |
果园Orchard | 0~20 | 16.17±0.67 Ca | 26.55±1.12 Aa | 57.28±1.15 Aa | 34.31±1.52 Aa | 65.69±1.52 Aa |
20~40 | 18.16±1.31 Ba | 27.71±2.52 Aa | 54.12±3.78 Aa | 29.55±2.44 Ba | 70.45±2.44 Aa | |
苗圃Nursery | 0~20 | 25.60±2.36 Aa | 18.92±1.54 Ca | 55.48±1.80 Aa | 33.22±3.35 Aa | 66.78±3.35 Aa |
20~40 | 23.85±2.41 Aa | 21.11±1.32 Ba | 55.04±2.17 Aa | 31.50±2.58 Ba | 68.50±2.58 Aa | |
平原造林地 | 0~20 | 18.80±1.28 BCb | 27.38±0.99 Aa | 53.82±1.02 Aa | 39.27±1.99 Aa | 60.73±1.99 Aa |
Plain plantation | 20~40 | 23.73±1.47 Aa | 25.45±1.88 ABa | 50.81±5.02 Aa | 37.45±2.51 Aa | 62.55±2.51 Ba |
指标index | SOC | FAC | HAC | HC | LFOC | HFOC |
---|---|---|---|---|---|---|
FAC | 0.700** | |||||
HAC | 0.902** | 0.484** | ||||
HC | 0.971** | 0.630** | 0.802** | |||
LFOC | 0.862** | 0.574** | 0.695** | 0.893** | ||
HFOC | 0.954** | 0.685** | 0.908** | 0.893** | 0.670** | |
pH | -0.635** | -0.396** | -0.579** | -0.625** | -0.484** | -0.643** |
土壤容重Soil bulk density | -0.532** | -0.483** | -0.430** | -0.516** | -0.414** | -0.533** |
总孔隙度Total porosity | 0.534** | 0.484** | 0.432** | 0.518** | 0.416** | 0.535** |
田间持水量Field capacity | 0.470** | 0.430** | 0.400** | 0.444** | 0.369** | 0.470** |
碱解氮Alkali-hydrolyzed nitrogen | 0.684** | 0.588** | 0.553** | 0.672** | 0.639** | 0.623** |
有效磷Available phosphorus | 0.741** | 0.496** | 0.683** | 0.716** | 0.580** | 0.742** |
速效钾Available potassium | 0.549** | 0.343** | 0.509** | 0.536** | 0.433** | 0.548** |
表4 土壤有机碳及其组分与土壤理化性质的相关性
Table 4 Correlation of soil organic carbon and its components with soil physical and chemical properties
指标index | SOC | FAC | HAC | HC | LFOC | HFOC |
---|---|---|---|---|---|---|
FAC | 0.700** | |||||
HAC | 0.902** | 0.484** | ||||
HC | 0.971** | 0.630** | 0.802** | |||
LFOC | 0.862** | 0.574** | 0.695** | 0.893** | ||
HFOC | 0.954** | 0.685** | 0.908** | 0.893** | 0.670** | |
pH | -0.635** | -0.396** | -0.579** | -0.625** | -0.484** | -0.643** |
土壤容重Soil bulk density | -0.532** | -0.483** | -0.430** | -0.516** | -0.414** | -0.533** |
总孔隙度Total porosity | 0.534** | 0.484** | 0.432** | 0.518** | 0.416** | 0.535** |
田间持水量Field capacity | 0.470** | 0.430** | 0.400** | 0.444** | 0.369** | 0.470** |
碱解氮Alkali-hydrolyzed nitrogen | 0.684** | 0.588** | 0.553** | 0.672** | 0.639** | 0.623** |
有效磷Available phosphorus | 0.741** | 0.496** | 0.683** | 0.716** | 0.580** | 0.742** |
速效钾Available potassium | 0.549** | 0.343** | 0.509** | 0.536** | 0.433** | 0.548** |
[1] | LAL R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627. |
[2] | WILLIAMS R G, KATAVOUTA A, GOODWIN P. Carbon-cycle feedbacks operating in the climate system[J]. Current Climate Change Reports, 2019, 5(4): 282-295. |
[3] | 安申群, 贡璐, 李杨梅, 等. 塔里木盆地北缘绿洲4种土地利用方式土壤有机碳组分分布特征及其与土壤环境因子的关系[J]. 环境科学, 2018, 39(7): 3382-3390. |
AN S Q, GONG L, LI Y M, et al. Soil organic carbon components and their correlation with soil physicochemical factors in four different land use types of the northern Tarim Basin[J]. Environmental Science, 2018, 39(7): 3382-3390. (in Chinese with English abstract) | |
[4] | 董玉清, 官鹏, 卢瑛, 等. 猫儿山不同海拔土壤有机碳组分构成及含量特征[J]. 土壤通报, 2020, 51(5): 1142-1151. |
DONG Y Q, GUAN P, LU Y, et al. Fraction and content of soil organic carbon at different elevations in maoer mountain[J]. Chinese Journal of Soil Science, 2020, 51(5): 1142-1151. (in Chinese with English abstract) | |
[5] | 蓝家程, 肖时珍, 林俊清, 等. 土地利用方式对岩溶山地土壤轻组和重组有机碳的影响[J]. 浙江农业学报, 2017, 29(10): 1720-1725. |
LAN J C, XIAO S Z, LIN J Q, et al. Effect of land use types on soil light and heavy fraction organic carbon in Karst Mountain area[J]. Acta Agriculturae Zhejiangensis, 2017, 29(10): 1720-1725. (in Chinese with English abstract) | |
[6] | 张文敏, 吴明, 王蒙, 等. 杭州湾湿地不同植被类型下土壤有机碳及其组分分布特征[J]. 土壤学报, 2014, 51(6): 1351-1360. |
ZHANG W M, WU M, WANG M, et al. Distribution characteristics of organic carbon and its components in soils under different types of vegetation in wetland of Hangzhou Bay[J]. Acta Pedologica Sinica, 2014, 51(6): 1351-1360. (in Chinese with English abstract) | |
[7] |
|
[8] | NKRUMAH T, ZHANG M L, STEPHEN N, et al. Response of carbon budget to climate change of the alpine meadow in Gannan using the CENTURY model[J]. Journal of Water and Climate Change, 2022, 13(6): 2298-2318. |
[9] | 廖宇琴, 龙娟, 木志坚, 等. 重庆农田土壤有机碳稳定性同位素空间分布特征[J]. 环境科学, 2022, 43(6): 3348-3356. |
LIAO Y Q, LONG J, MU Z J, et al. Spatial characterization of stable isotope composition of organic carbon from farmland soils in Chongqing[J]. Environmental Science, 2022, 43(6): 3348-3356. (in Chinese with English abstract) | |
[10] | 石小霞, 赵诣, 张琳, 等. 华北平原不同农田管理措施对于土壤碳库的影响[J]. 环境科学, 2017, 38(1): 301-308. |
SHI X X, ZHAO Y, ZHANG L, et al. Effects of different agricultural practices on soil carbon pool in North China Plain[J]. Environmental Science, 2017, 38(1): 301-308. (in Chinese with English abstract) | |
[11] | ZHANG Y J, ZHANG Y J, GUO S L, et al. Soil moisture influence on the interannual variation in temperature sensitivity of soil organic carbon mineralization in the Loess Plateau[J]. Biogeosciences, 2015, 12: 3655-3664. |
[12] | 邬建红, 潘剑君, 葛序娟, 等. 不同土地利用方式下土壤有机碳矿化及其温度敏感性[J]. 水土保持学报, 2015, 29(3): 130-135. |
WU J H, PAN J J, GE X J, et al. Variations of soil organic carbon mineralization and temperature sensitivity under different land use types[J]. Journal of Soil and Water Conservation, 2015, 29(3): 130-135. (in Chinese with English abstract) | |
[13] | ZHU M, FENG Q, QIN Y Y, et al. The role of topography in shaping the spatial patterns of soil organic carbon[J]. CATENA, 2019, 176: 296-305. |
[14] | 朱浩宇, 王子芳, 陆畅, 等. 缙云山5种植被下土壤活性有机碳及碳库变化特征[J]. 土壤, 2021, 53(2): 354-360. |
ZHU H Y, WANG Z F, LU C, et al. Variation characteristics of soil active organic carbon and carbon pools under five vegetation types in Jinyun Mountain[J]. Soils, 2021, 53(2): 354-360. (in Chinese with English abstract) | |
[15] | HE Y T, HE X H, XU M G, et al. Long-term fertilization increases soil organic carbon and alters its chemical composition in three wheat-maize cropping sites across central and South China[J]. Soil and Tillage Research, 2018, 177: 79-87. |
[16] | LI X S, QU C Y, LI Y N, et al. Long-term effects of straw mulching coupled with N application on soil organic carbon sequestration and soil aggregation in a winter wheat monoculture system[J]. Agronomy Journal, 2021, 113(2): 2118-2131. |
[17] | 张青青, 伍海兵, 梁晶. 上海市绿地表层土壤有机碳储量的估算[J]. 土壤, 2020, 52(4): 819-824. |
ZHANG Q Q, WU H B, LIANG J. Estimation of storage of organic carbon in green surface soils in Shanghai[J]. Soils, 2020, 52(4): 819-824. (in Chinese with English abstract) | |
[18] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[19] | 窦森, 于水强, 张晋京. 不同CO2浓度对玉米秸秆分解期间土壤腐殖质形成的影响[J]. 土壤学报, 2007, 44(3): 458-466. |
DOU S, YU S Q, ZHANG J J. Effects of carbon dioxide concentration on humus formation in corn stalk decomposition[J]. Acta Pedologica Sinica, 2007, 44(3): 458-466. (in Chinese with English abstract) | |
[20] | BATJES N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47(2): 151-163. |
[21] | SCHIMEL D, PAVLICK R, FISHER J B, et al. Observing terrestrial ecosystems and the carbon cycle from space[J]. Global Change Biology, 2015, 21(5): 1762-1776. |
[22] | 陈心桐, 徐天乐, 李雪静, 等. 中国北方自然生态系统土壤有机碳含量及其影响因素[J]. 生态学杂志, 2019, 38(4): 1133-1140. |
CHEN X T, XU T L, LI X J, et al. Soil organic carbon concentrations and the influencing factors in natural ecosystems of Northern China[J]. Chinese Journal of Ecology, 2019, 38(4): 1133-1140. (in Chinese with English abstract) | |
[23] | 罗原骏, 蒲玉琳, 龙高飞, 等. 施肥方式对土壤活性有机碳及碳库管理指数的影响[J]. 浙江农业学报, 2018, 30(8): 1389-1397. |
LUO Y J, PU Y L, LONG G F, et al. Effects of fertilization on soil active organic carbon and carbon pool management index[J]. Acta Agriculturae Zhejiangensis, 2018, 30(8): 1389-1397. (in Chinese with English abstract) | |
[24] | 吕晓菡, 章明奎, 严建立. 绿肥配施有机肥改良新建红壤橘园的效果研究[J]. 土壤通报, 2020, 51(1): 164-170. |
LÜ X H, ZHANG M K, YAN J L. Effect of green manure combined with organic fertilizer on the improvement of red soil in the newly reclaimed orchard[J]. Chinese Journal of Soil Science, 2020, 51(1): 164-170. (in Chinese with English abstract) | |
[25] | 李如剑, 王蕊, 李娜娜, 等. 黄土区果园和刺槐林生态系统土壤有机碳变化及影响因素[J]. 环境科学, 2015, 36(7): 2662-2668. |
LI R J, WANG R, LI N N, et al. Changes of soil organic carbon and its influencing factors of apple orchards and black locusts in the small watershed of loess plateau, China[J]. Environmental Science, 2015, 36(7): 2662-2668. (in Chinese with English abstract) | |
[26] | 周成云, 郑铭洁, 章明奎, 等. 水田长期改建苗圃后土壤性状的变化研究[J]. 浙江农业科学, 2021, 62(6): 1071-1075. |
ZHOU C Y, ZHENG M J, ZHANG M K, et al. Changes of soil properties after nursery plantation-induced soil property changes in paddy field[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(6): 1071-1075. (in Chinese with English abstract) | |
[27] | 马志良, 赵文强. 植物群落向土壤有机碳输入及其对气候变暖的响应研究进展[J]. 生态学杂志, 2020, 39(1): 270-281. |
MA Z L, ZHAO W Q. Research progress on input of plant community-derived soil organic carbon and its responses to climate warming[J]. Chinese Journal of Ecology, 2020, 39(1): 270-281. (in Chinese with English abstract) | |
[28] | DERGACHEVA M I, ONDAR E E, ZAKHAROVA E G. Humus profiles of mountain-chestnut soils of a complex catena in Central Tuva[J]. Contemporary Problems of Ecology, 2010, 3(3): 299-304. |
[29] | 杨洋, 张玉龙, 安晶. 灌溉方式对设施土壤总有机碳及其腐殖质组分的影响[J]. 水土保持学报, 2017, 31(5): 273-277, 286. |
YANG Y, ZHANG Y L, AN J. Effects of irrigation methods on total organic carbon and humus components of greenhouse soil[J]. Journal of Soil and Water Conservation, 2017, 31(5): 273-277, 286. (in Chinese with English abstract) | |
[30] | 祖元刚, 李冉, 王文杰, 等. 我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J]. 生态学报, 2011, 31(18): 5207-5216. |
ZU Y G, LI R, WANG W J, et al. Soil organic and inorganic carbon contents in relation to soil physicochemical properties in northeastern China[J]. Acta Ecologica Sinica, 2011, 31(18): 5207-5216. (in Chinese with English abstract) | |
[31] | HUANG X, WANG X P, LI X Z, et al. Distribution pattern and influencing factors for soil organic carbon (SOC) in mangrove communities at Dongzhaigang, China[J]. Journal of Coastal Research, 2018, 342: 434-442. |
[32] | 祁金虎. 辽东山区天然次生栎林土壤有机碳含量及其与理化性质的关系[J]. 水土保持学报, 2017, 31(4): 135-140. |
QI J H. Contents of soil organic carbon and its relations with physicochemical properties of secondary natural oak forests in eastern mountain area of Liaoning Province[J]. Journal of Soil and Water Conservation, 2017, 31(4): 135-140. (in Chinese with English abstract) | |
[33] | 赵瑞华, 昌蕊蕊, 贺晓龙. 延安不同种植年限枣园土壤微生物、养分及pH的相关性[J]. 安徽农业科学, 2014, 42(28): 9749-9751. |
ZHAO R H, CHANG R R, HE X L. Correlation of soil microbes, nutrients and pH of different jujube planting life orchards in Yanan area[J]. Journal of Anhui Agricultural Sciences, 2014, 42(28): 9749-9751. (in Chinese with English abstract) | |
[34] | SUN H M, JIANG J, CUI L N, et al. Soil organic carbon stabilization mechanisms in a subtropical mangrove and salt marsh ecosystems[J]. Science of the Total Environment, 2019, 673: 502-510. |
[35] | 张昆, 吕宪国, 田昆. 纳帕海高原湿地土壤有机质对水分梯度变化的响应[J]. 云南大学学报(自然科学版), 2008, 30(4): 424-427. |
ZHANG K, LÜ X G, TIAN K. Response of soil organic matters to water contents in Napahai Plateau wetlands[J]. Journal of Yunnan University(Natural Sciences Edition), 2008, 30(4): 424-427. (in Chinese with English abstract) |
[1] | 姚龙仁, 王肖君, 卓超, 冷明珠, 倪吾钟. 模拟酸雨对茶园土壤磷素溶出特征与形态的影响[J]. 浙江农业学报, 2022, 34(12): 2700-2709. |
[2] | 钱家炜, 刘晓青, 张静静, 周卫红, 李建龙. 张家港市农田土壤重金属含量高光谱遥感监测模型构建[J]. 浙江农业学报, 2020, 32(8): 1437-1445. |
[3] | 吴承杰, 任兰天, 郝冰, 邵庆勤, 王泓, 陈峰, 代高峰, 梅世远, 张从军. 秸秆堆肥部分替代化肥配施硝化抑制剂对冬小麦温室气体排放的影响[J]. 浙江农业学报, 2020, 32(7): 1233-1240. |
[4] | 方向, 金秀, 朱娟娟, 李绍稳. 基于可见-近红外光谱预处理建模的土壤速效氮含量预测[J]. 浙江农业学报, 2019, 31(9): 1523-1530. |
[5] | 吴春艳, 刘晓霞, 陈义, 李艳, 唐旭, 陆若辉. 不同施肥管理下水旱轮作水稻土磷含量的演变[J]. 浙江农业学报, 2019, 31(7): 1128-1137. |
[6] | 王文才, 赵刘, 李绍稳, 齐海军, 金秀, 王帅. 基于特征波长选择和建模的高光谱土壤总氮含量估测方法研究[J]. 浙江农业学报, 2018, 30(9): 1576-1584. |
[7] | 杨煜岑, 杨联安, 任丽, 李聪莉, 朱群娥, 王天泰, 李新尧. 基于随机森林的农耕区土壤有机质空间分布预测[J]. 浙江农业学报, 2018, 30(7): 1211-1217. |
[8] | 左佃云, 田昊, 周晋成, 赵燕东. 土壤介电特性与其影响因素的相关性研究[J]. 浙江农业学报, 2017, 29(10): 1712-1719. |
[9] | 蓝家程, 肖时珍, 林俊清, 沈艳. 土地利用方式对岩溶山地土壤轻组和重组有机碳的影响[J]. 浙江农业学报, 2017, 29(10): 1720-1725. |
[10] | 虞舟鲁, 邱乐丰, 林霖. 土地利用方式变化对农业土壤有机碳空间分布的影响[J]. 浙江农业学报, 2017, 29(5): 806-811. |
[11] | 董环, 娄春荣, 袁兴福, 陈晓云, 何志刚. 北方设施草甸土土壤盐分组成分析[J]. 浙江农业学报, 2016, 28(12): 2076-2081. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 451
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 249
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||