浙江农业学报 ›› 2023, Vol. 35 ›› Issue (10): 2398-2407.DOI: 10.3969/j.issn.1004-1524.20221361
钟丽萍1(), 王尖2, 吴晓花2, 汪颖2, 吴新义2, 汪宝根2, 鲁忠富2, 王华森1,*(
), 李国景2,*(
)
收稿日期:
2022-09-20
出版日期:
2023-10-25
发布日期:
2023-10-31
作者简介:
钟丽萍(1998—),女,福建龙岩人,硕士研究生,研究方向为蔬菜作物分子育种。E-mail:572597612@qq.com
通讯作者:
*李国景,E-mail: 基金资助:
ZHONG Liping1(), WANG Jian2, WU Xiaohua2, WANG Ying2, WU Xinyi2, WANG Baogen2, LU Zhongfu2, WANG Huasen1,*(
), LI Guojing2,*(
)
Received:
2022-09-20
Online:
2023-10-25
Published:
2023-10-31
摘要:
白粉病是葫芦科作物共有的病害之一,严重影响瓠瓜的产量和品质。本研究采用8个瓠瓜亲本F8代的203个MAGIC(multi-parent advanced generation inter-cross)群体,利用2020和2021年两年的抗病表型数据,基于基因重测序过滤筛选得到的221 043个高质量SNPs进行全基因组关联分析(genome-wide association study, GWAS)。在两年数据中重复检测到46个SNPs位点与白粉病抗性显著相关,在与抗病相关联的候选区段内共检测到32个候选基因,其中有12个基因预测与瓠瓜抗病功能相关。本研究首次在葫芦科作物中构建了MAGIC群体,并通过GWAS分析进行白粉病抗病基因定位,为克隆瓠瓜抗白粉病相关基因奠定了基础,也对深入了解白粉病抗性机制、辅助培育抗病品种具有重要意义。
中图分类号:
钟丽萍, 王尖, 吴晓花, 汪颖, 吴新义, 汪宝根, 鲁忠富, 王华森, 李国景. 基于MAGIC群体瓠瓜白粉病抗性的全基因组关联分析[J]. 浙江农业学报, 2023, 35(10): 2398-2407.
ZHONG Liping, WANG Jian, WU Xiaohua, WANG Ying, WU Xinyi, WANG Baogen, LU Zhongfu, WANG Huasen, LI Guojing. Genome wide association analysis of powdery mildew resistance of bottle gourd based on MAGIC population[J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2398-2407.
图2 瓠瓜MAGIC群体白粉病抗性类型 A和B分别表示2020年和2021年的表型数据。
Fig.2 Type of powdery mildew resistance in the MAGIC population of bottle gourd A and B represent phenotype data in 2020 and 2021 respectively.
图3 MAGIC群体的白粉病鉴定标准和生长情况 a,白粉病病情分级标准;b,MAGIC群体接种生长室;c,不同程度抗白粉病的株系。
Fig.3 Identification criteria and growth of powdery mildew in MAGIC population a, Grading standard of powdery mildew; b, MAGIC population inoculation growth room; c, Lines with different degrees of resistance to powdery mildew.
图4 瓠瓜MAGIC群体的群体结构分析 A代表亲缘关系进化树;B代表交叉验证错误率,K=8时CV error值最小;C代表群体聚类图,总共分成8个组;D代表群体结构,不同的颜色代表不同的亚群,分成8个亚群。
Fig.4 Population structure analysis of the MAGIC population of bottle gourd A stands for phylogenetic tree; B represents the cross validation error rate. When K=8, the CV error value is the minimum; C represents the cluster diagram of the population, which is divided into 8 groups in total; D represents population structure, and different colors represent different subgroups, which are divided into 8 subgroups.
标记 Marker | 染色体 Chromosome | 物理位置 Position | 等位变异 Allelic variation | 2020 | 2021 | ||
---|---|---|---|---|---|---|---|
LOD | R2 | LOD | R2 | ||||
rs128943 | 4 | 16716155 | T/C | 4.37 | 0.10 | 4.44 | 0.11 |
rs133635 | 4 | 20719657 | A/C | 5.21 | 0.12 | 5.42 | 0.12 |
rs133636 | 4 | 20719660 | T/C | 4.24 | 0.09 | 4.45 | 0.10 |
rs133637 | 4 | 20719661 | A/G | 4.09 | 0.09 | 4.46 | 0.10 |
rs155165 | 5 | 11936046 | A/T | 4.93 | 0.12 | 4.15 | 0.10 |
rs209093 | 6 | 24723915 | A/G | 4.93 | 0.12 | 4.00 | 0.10 |
rs209142 | 6 | 24825291 | C/T | 4.84 | 0.12 | 4.07 | 0.10 |
rs209168 | 6 | 24876006 | T/C | 5.14 | 0.12 | 4.21 | 0.10 |
rs209230 | 6 | 25032014 | G/A | 5.14 | 0.12 | 4.08 | 0.10 |
rs209251 | 6 | 25066874 | G/A | 4.98 | 0.12 | 4.15 | 0.10 |
rs209271 | 6 | 25090297 | T/A | 4.52 | 0.13 | 4.07 | 0.11 |
rs209283 | 6 | 25102969 | G/A | 5.40 | 0.14 | 4.89 | 0.13 |
rs209284 | 6 | 25103852 | C/T | 4.73 | 0.12 | 4.28 | 0.11 |
rs209326 | 6 | 25189107 | C/T | 4.80 | 0.12 | 4.03 | 0.10 |
rs209351 | 6 | 25265209 | G/A | 6.20 | 0.16 | 5.52 | 0.14 |
rs209453 | 6 | 25488354 | A/C | 6.70 | 0.15 | 5.69 | 0.13 |
rs209468 | 6 | 25525766 | C/A | 5.48 | 0.13 | 4.30 | 0.10 |
rs209469 | 6 | 25527123 | A/G | 7.39 | 0.19 | 5.94 | 0.16 |
rs209471 | 6 | 25535101 | T/C | 6.95 | 0.17 | 5.68 | 0.14 |
rs209472 | 6 | 25537606 | T/A | 5.00 | 0.12 | 4.17 | 0.10 |
rs209474 | 6 | 25541933 | T/C | 5.34 | 0.14 | 4.16 | 0.11 |
rs209477 | 6 | 25544278 | A/G | 6.40 | 0.16 | 5.09 | 0.13 |
rs209490 | 6 | 25558414 | A/C | 6.75 | 0.15 | 5.74 | 0.13 |
rs209513 | 6 | 25602550 | A/C | 5.17 | 0.14 | 4.02 | 0.11 |
rs209517 | 6 | 25610710 | C/T | 4.94 | 0.14 | 4.01 | 0.11 |
rs209550 | 6 | 25673431 | C/A | 6.33 | 0.14 | 5.19 | 0.12 |
rs209581 | 6 | 25777110 | G/A | 6.17 | 0.17 | 4.67 | 0.13 |
rs209597 | 6 | 25809928 | C/T | 4.94 | 0.14 | 4.19 | 0.12 |
rs209612 | 6 | 25844215 | A/C | 5.25 | 0.12 | 4.03 | 0.10 |
rs209648 | 6 | 25886250 | G/A | 5.93 | 0.15 | 4.93 | 0.13 |
rs209651 | 6 | 25890262 | A/T | 6.06 | 0.16 | 4.66 | 0.13 |
rs209653 | 6 | 25892149 | A/C | 5.43 | 0.15 | 4.53 | 0.12 |
rs209684 | 6 | 25983533 | C/A | 6.41 | 0.18 | 5.22 | 0.15 |
rs209708 | 6 | 26030284 | T/C | 5.51 | 0.14 | 4.32 | 0.11 |
rs209712 | 6 | 26034201 | G/A | 6.29 | 0.16 | 4.96 | 0.12 |
rs209781 | 6 | 26188347 | G/A | 6.75 | 0.16 | 5.16 | 0.12 |
rs209805 | 6 | 26214788 | C/T | 6.39 | 0.16 | 4.91 | 0.13 |
rs209874 | 6 | 26364399 | C/A | 6.25 | 0.14 | 4.93 | 0.12 |
rs232529 | 7 | 18504253 | C/T | 6.16 | 0.15 | 4.17 | 0.10 |
rs233763 | 7 | 19428401 | C/T | 5.18 | 0.11 | 4.76 | 0.10 |
rs233981 | 7 | 19522446 | T/C | 4.72 | 0.12 | 4.15 | 0.11 |
rs242106 | 8 | 2443873 | G/T | 4.64 | 0.10 | 4.42 | 0.09 |
rs252061 | 8 | 11388148 | A/G | 4.25 | 0.09 | 4.72 | 0.10 |
rs307101 | 10 | 17188451 | G/A | 4.16 | 0.10 | 4.19 | 0.10 |
rs309292 | 10 | 18960817 | T/C | 4.78 | 0.12 | 4.35 | 0.11 |
rs316055 | 11 | 566683 | A/T | 4.22 | 0.11 | 4.16 | 0.11 |
表1 瓠瓜白粉病抗性显著关联的SNP位点
Table 1 SNP loci significantly associated with powdery mildew resistance in bottle gourd
标记 Marker | 染色体 Chromosome | 物理位置 Position | 等位变异 Allelic variation | 2020 | 2021 | ||
---|---|---|---|---|---|---|---|
LOD | R2 | LOD | R2 | ||||
rs128943 | 4 | 16716155 | T/C | 4.37 | 0.10 | 4.44 | 0.11 |
rs133635 | 4 | 20719657 | A/C | 5.21 | 0.12 | 5.42 | 0.12 |
rs133636 | 4 | 20719660 | T/C | 4.24 | 0.09 | 4.45 | 0.10 |
rs133637 | 4 | 20719661 | A/G | 4.09 | 0.09 | 4.46 | 0.10 |
rs155165 | 5 | 11936046 | A/T | 4.93 | 0.12 | 4.15 | 0.10 |
rs209093 | 6 | 24723915 | A/G | 4.93 | 0.12 | 4.00 | 0.10 |
rs209142 | 6 | 24825291 | C/T | 4.84 | 0.12 | 4.07 | 0.10 |
rs209168 | 6 | 24876006 | T/C | 5.14 | 0.12 | 4.21 | 0.10 |
rs209230 | 6 | 25032014 | G/A | 5.14 | 0.12 | 4.08 | 0.10 |
rs209251 | 6 | 25066874 | G/A | 4.98 | 0.12 | 4.15 | 0.10 |
rs209271 | 6 | 25090297 | T/A | 4.52 | 0.13 | 4.07 | 0.11 |
rs209283 | 6 | 25102969 | G/A | 5.40 | 0.14 | 4.89 | 0.13 |
rs209284 | 6 | 25103852 | C/T | 4.73 | 0.12 | 4.28 | 0.11 |
rs209326 | 6 | 25189107 | C/T | 4.80 | 0.12 | 4.03 | 0.10 |
rs209351 | 6 | 25265209 | G/A | 6.20 | 0.16 | 5.52 | 0.14 |
rs209453 | 6 | 25488354 | A/C | 6.70 | 0.15 | 5.69 | 0.13 |
rs209468 | 6 | 25525766 | C/A | 5.48 | 0.13 | 4.30 | 0.10 |
rs209469 | 6 | 25527123 | A/G | 7.39 | 0.19 | 5.94 | 0.16 |
rs209471 | 6 | 25535101 | T/C | 6.95 | 0.17 | 5.68 | 0.14 |
rs209472 | 6 | 25537606 | T/A | 5.00 | 0.12 | 4.17 | 0.10 |
rs209474 | 6 | 25541933 | T/C | 5.34 | 0.14 | 4.16 | 0.11 |
rs209477 | 6 | 25544278 | A/G | 6.40 | 0.16 | 5.09 | 0.13 |
rs209490 | 6 | 25558414 | A/C | 6.75 | 0.15 | 5.74 | 0.13 |
rs209513 | 6 | 25602550 | A/C | 5.17 | 0.14 | 4.02 | 0.11 |
rs209517 | 6 | 25610710 | C/T | 4.94 | 0.14 | 4.01 | 0.11 |
rs209550 | 6 | 25673431 | C/A | 6.33 | 0.14 | 5.19 | 0.12 |
rs209581 | 6 | 25777110 | G/A | 6.17 | 0.17 | 4.67 | 0.13 |
rs209597 | 6 | 25809928 | C/T | 4.94 | 0.14 | 4.19 | 0.12 |
rs209612 | 6 | 25844215 | A/C | 5.25 | 0.12 | 4.03 | 0.10 |
rs209648 | 6 | 25886250 | G/A | 5.93 | 0.15 | 4.93 | 0.13 |
rs209651 | 6 | 25890262 | A/T | 6.06 | 0.16 | 4.66 | 0.13 |
rs209653 | 6 | 25892149 | A/C | 5.43 | 0.15 | 4.53 | 0.12 |
rs209684 | 6 | 25983533 | C/A | 6.41 | 0.18 | 5.22 | 0.15 |
rs209708 | 6 | 26030284 | T/C | 5.51 | 0.14 | 4.32 | 0.11 |
rs209712 | 6 | 26034201 | G/A | 6.29 | 0.16 | 4.96 | 0.12 |
rs209781 | 6 | 26188347 | G/A | 6.75 | 0.16 | 5.16 | 0.12 |
rs209805 | 6 | 26214788 | C/T | 6.39 | 0.16 | 4.91 | 0.13 |
rs209874 | 6 | 26364399 | C/A | 6.25 | 0.14 | 4.93 | 0.12 |
rs232529 | 7 | 18504253 | C/T | 6.16 | 0.15 | 4.17 | 0.10 |
rs233763 | 7 | 19428401 | C/T | 5.18 | 0.11 | 4.76 | 0.10 |
rs233981 | 7 | 19522446 | T/C | 4.72 | 0.12 | 4.15 | 0.11 |
rs242106 | 8 | 2443873 | G/T | 4.64 | 0.10 | 4.42 | 0.09 |
rs252061 | 8 | 11388148 | A/G | 4.25 | 0.09 | 4.72 | 0.10 |
rs307101 | 10 | 17188451 | G/A | 4.16 | 0.10 | 4.19 | 0.10 |
rs309292 | 10 | 18960817 | T/C | 4.78 | 0.12 | 4.35 | 0.11 |
rs316055 | 11 | 566683 | A/T | 4.22 | 0.11 | 4.16 | 0.11 |
基因 Gene | 染色体 Chromosome | 起始位置 Start position | 终止位置 Termination position | 基因注释 Gene annotation |
---|---|---|---|---|
HG_GLEAN_10010653 | 6 | 24445461 | 24452650 | PREDICTED: serine/threonine-protein kinase ATG1a isoform X4 [Cucumis melo] |
HG_GLEAN_10010699 | 6 | 24954657 | 24959458 | serine/threonine-protein kinase PBS1-like [Cucurbita maxima] |
HG_GLEAN_10010836 | 6 | 26331125 | 26337328 | MLO-like protein 1 [Cucumis melo]>gi|261263490|gb|ACX55085.1| Mlo1 [Cucumis melo] |
HG_GLEAN_10010861 | 6 | 26570005 | 26571963 | PREDICTED: receptor-like serine/threonine-protein kinase At2g45590 [Cucumis melo] |
HG_GLEAN_10006490 | 7 | 19152316 | 19158212 | PREDICTED: probable serine/threonine-protein kinase At1g54610 [Cucumis melo] |
HG_GLEAN_10006502 | 7 | 19277449 | 19280693 | PREDICTED: probable serine/threonine-protein kinase WNK9 [Cucumis melo] |
HG_GLEAN_10006508 | 7 | 19371792 | 19377140 | PREDICTED: serine/threonine-protein kinase Nek2-like isoform X1 [Cucumis melo] |
HG_GLEAN_10006568 | 7 | 19920968 | 19922269 | PREDICTED: CBL-interacting serine/threonine-protein kinase 6 [Cucumis sativus] |
HG_GLEAN_10006594 | 7 | 20207830 | 20208111 | cysteine-rich receptor-like protein kinase 4 isoform X2 [Cucurbita maxima] |
HG_GLEAN_10008051 | 10 | 19112275 | 19116452 | PREDICTED: CBL-interacting serine/threonine-protein kinase 24 isoform X1 [Cucumis melo] |
HG_GLEAN_10001793 | 11 | 491462 | 494227 | PREDICTED: serine/threonine-protein kinase-like protein ACR4 [Cucumis sativus] |
表2 候选基因的染色体、位置、基因注释
Table 2 Chromosome, location and gene annotation of candidate genes
基因 Gene | 染色体 Chromosome | 起始位置 Start position | 终止位置 Termination position | 基因注释 Gene annotation |
---|---|---|---|---|
HG_GLEAN_10010653 | 6 | 24445461 | 24452650 | PREDICTED: serine/threonine-protein kinase ATG1a isoform X4 [Cucumis melo] |
HG_GLEAN_10010699 | 6 | 24954657 | 24959458 | serine/threonine-protein kinase PBS1-like [Cucurbita maxima] |
HG_GLEAN_10010836 | 6 | 26331125 | 26337328 | MLO-like protein 1 [Cucumis melo]>gi|261263490|gb|ACX55085.1| Mlo1 [Cucumis melo] |
HG_GLEAN_10010861 | 6 | 26570005 | 26571963 | PREDICTED: receptor-like serine/threonine-protein kinase At2g45590 [Cucumis melo] |
HG_GLEAN_10006490 | 7 | 19152316 | 19158212 | PREDICTED: probable serine/threonine-protein kinase At1g54610 [Cucumis melo] |
HG_GLEAN_10006502 | 7 | 19277449 | 19280693 | PREDICTED: probable serine/threonine-protein kinase WNK9 [Cucumis melo] |
HG_GLEAN_10006508 | 7 | 19371792 | 19377140 | PREDICTED: serine/threonine-protein kinase Nek2-like isoform X1 [Cucumis melo] |
HG_GLEAN_10006568 | 7 | 19920968 | 19922269 | PREDICTED: CBL-interacting serine/threonine-protein kinase 6 [Cucumis sativus] |
HG_GLEAN_10006594 | 7 | 20207830 | 20208111 | cysteine-rich receptor-like protein kinase 4 isoform X2 [Cucurbita maxima] |
HG_GLEAN_10008051 | 10 | 19112275 | 19116452 | PREDICTED: CBL-interacting serine/threonine-protein kinase 24 isoform X1 [Cucumis melo] |
HG_GLEAN_10001793 | 11 | 491462 | 494227 | PREDICTED: serine/threonine-protein kinase-like protein ACR4 [Cucumis sativus] |
[1] | 李鲁峰, 王翔, 楼旭平, 等. 瓠瓜新品种浙蒲903嫁接砧木筛选试验[J]. 浙江农业科学, 2022, 63(5): 910-913. |
LI L F, WANG X, LOU X P, et al. Screening test of grafting rootstocks for new bottle gourd variety Zhepu 903[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(5): 910-913. (in Chinese) | |
[2] | 向贵生, 王开锦, 晏慧君, 等. 蔷薇科植物MLO蛋白家族的生物信息学分析[J]. 基因组学与应用生物学, 2018, 37(5): 2043-2059. |
XIANG G S, WANG K J, YAN H J, et al. Bioinformatics analysis of MLO protein family in Rosaceae plants[J]. Genomics and Applied Biology, 2018, 37(5): 2043-2059. (in Chinese with English abstract) | |
[3] | ZHANG P, ZHU Y Q, WANG L L, et al. Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing[J]. BMC Genomics, 2015, 16: 1058. |
[4] | 郝俊杰, 李磊, 王波, 等. 黄瓜白粉病抗性基因定位及候选基因分析[J]. 中国农业科学, 2018, 51(17): 3427-3434. |
HAO J J, LI L, WANG B, et al. Fine mapping and analysis candidate gene to powdery mildew in cucumber(Cucumis sativus L.)[J]. Scientia Agricultura Sinica, 2018, 51(17): 3427-3434. (in Chinese with English abstract) | |
[5] | ZHANG C Y, ANARJAN M B, WIN K T, et al. QTL-seq analysis of powdery mildew resistance in a Korean cucumber inbred line[J]. Theoretical and Applied Genetics, 2021, 134(2): 435-451. |
[6] | CAO Y Y, DIAO Q N, CHEN Y Y, et al. Development of KASP markers and identification of a QTL underlying powdery mildew resistance in melon (Cucumis melo L.) by bulked segregant analysis and RNA-seq[J]. Frontiers in Plant Science, 2021, 11: 593207. |
[7] | ACEVEDO-GARCIA J, GRUNER K, REINSTÄDLER A, et al. The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens[J]. Scientific Reports, 2017, 7: 9319. |
[8] | QIU X Q, WANG Q G, ZHANG H, et al. Antisense RhMLO1 gene transformation enhances resistance to the powdery mildew pathogen in Rosa multiflora[J]. Plant Molecular Biology Reporter, 2015, 33(6): 1659-1665. |
[9] | KOIDE H, HISANO H, YAENO T. CRISPR/Cas9-based generation of mlo mutants for allelic complementation experiments to elucidate MLO function in barley[J]. Journal of General Plant Pathology, 2023, 89(3): 153-158. |
[10] | 徐坚, 陈先知, 王燕, 等. 黄瓜、甜瓜和西瓜MLO基因家族的比较基因组学分析[J]. 核农学报, 2014, 28(6): 1006-1017. |
XU J, CHEN X Z, WANG Y, et al. Comparative genomics analysis of MLO gene family in cucumber, melon and watermelon[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(6): 1006-1017. (in Chinese with English abstract) | |
[11] | 李可, 金辉, 陈卓, 等. 中国南瓜MLO基因的鉴定与表达分析[J]. 江苏农业科学, 2023, 51(6): 32-39. |
LI K, JIN H, CHEN Z, et al. Identification and expression analysis of MLO gene in Chinese pumpkin[J]. Jiangsu Agricultural Sciences, 2023, 51(6): 32-39. (in Chinese) | |
[12] | 王玲平, 吴晓花, 汪宝根, 等. 与瓠瓜品系‘J083’白粉病抗性基因连锁的SCAR分子标记[J]. 浙江大学学报(农业与生命科学版), 2011, 37(2): 119-124. |
WANG L P, WU X H, WANG B G, et al. SCAR marker linked to resistance gene of powdery mildew in bottle gourd[Lagenaria siceraria (Molina) Standl.]breeding line J083[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2011, 37(2): 119-124. (in Chinese with English abstract) | |
[13] | 吴晓花, 汪颖, 吴新义, 等. 瓠瓜(Lagenaria siceraria)白粉病抗性的全基因组关联分析[J]. 分子植物育种, 2020, 18(3): 759-764. |
WU X H, WANG Y, WU X Y, et al. Genome-wide association analysis of powdery mildew resistance in bottle gourd (Lagenaria siceraria)[J]. Molecular Plant Breeding, 2020, 18(3): 759-764. (in Chinese with English abstract) | |
[14] | XU P, WANG Y, SUN F S, et al. Long-read genome assembly and genetic architecture of fruit shape in the bottle gourd[J]. The Plant Journal, 2021, 107(3): 956-968. |
[15] | ISLAM M S, THYSSEN G N, JENKINS J N, et al. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton[J]. BMC Genomics, 2016, 17(1): 1-17. |
[16] | BOSSA-CASTRO A M, TEKETE C, RAGHAVAN C, et al. Allelic variation for broad-spectrum resistance and susceptibility to bacterial pathogens identified in a rice MAGIC population[J]. Plant Biotechnology Journal, 2018, 16(9): 1559-1568. |
[17] | RAVELOMBOLA W, SHI A N, HUYNH B L, et al. Genetic architecture of salt tolerance in a Multi-Parent Advanced Generation Inter-Cross (MAGIC) cowpea population[J]. BMC Genomics, 2022, 23(1): 100. |
[18] | WANG Y, WU X H, LI Y W, et al. Identification and validation of a core single-nucleotide polymorphism marker set for genetic diversity assessment, fingerprinting identification, and core collection development in bottle gourd[J]. Frontiers in Plant Science, 2021, 12: 747940. |
[19] | 沈镝, 李锡香. 瓠瓜种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2008. |
[20] | KUSCH S, PANSTRUGA R. Mlo-based resistance: an apparently universal weapon to defeat powdery mildew disease[J]. Molecular Plant-Microbe Interactions, 2017, 30(3): 179-189. |
[21] | 程鸿, 孔维萍. 白粉病相关基因MLO在瓜菜类白粉病广谱抗性研究中的应用[J]. 中国瓜菜, 2015, 28(4): 1-5. |
CHENG H, KONG W P. Progress of MLO gene on broad-spectrum resistance to powdery mildew in cucurbits and vegetables[J]. China Cucurbits and Vegetables, 2015, 28(4): 1-5. (in Chinese with English abstract) | |
[22] | ELLINGER D, NAUMANN M, FALTER C, et al. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis[J]. Plant Physiology, 2013, 161(3): 1433-1444. |
[23] | NAUMANN M, SOMERVILLE S, VOIGT C. Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines[J]. Plant Signaling & Behavior, 2013, 8(6): e24408. |
[24] | XU P, WU X H, LUO J, et al. Partial sequencing of the bottle gourd genome reveals markers useful for phylogenetic analysis and breeding[J]. BMC Genomics, 2011, 12: 467. |
[25] | XU P, XU S Z, WU X H, et al. Population genomic analyses from low-coverage RAD-Seq data: a case study on the non-model cucurbit bottle gourd[J]. The Plant Journal, 2014, 77(3): 430-442. |
[26] | YU J W, ZHANG K, LI S Y, et al. Mapping quantitative trait loci for lint yield and fiber quality across environments in a Gossypium hirsutum×Gossypium barbadense backcross inbred line population[J]. Theoretical and Applied Genetics, 2013, 126(1): 275-287. |
[27] | ISLAM M S, ZENG L H, DELHOM C D, et al. Identification of cotton fiber quality quantitative trait loci using intraspecific crosses derived from two near-isogenic lines differing in fiber bundle strength[J]. Molecular Breeding, 2014, 34(2): 373-384. |
[28] | CAO Z B, ZHU X F, CHEN H, et al. Fine mapping of clustered quantitative trait loci for fiber quality on chromosome 7 using a Gossypium barbadense introgressed line[J]. Molecular Breeding, 2015, 35(11): 215. |
[29] | CAVANAGH C, MORELL M, MACKAY I, et al. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants[J]. Current Opinion in Plant Biology, 2008, 11(2): 215-221. |
[30] | XU X W, YU T, XU R X, et al. Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes[J]. Theoretical and Applied Genetics, 2016, 129(3): 507-516. |
[31] | CHENG H, KONG W P, HOU D, et al. Isolation, characterization, and expression analysis of CmMLO2 in muskmelon[J]. Molecular Biology Reports, 2013, 40(3): 2609-2615. |
[1] | 白鼎臣, 赵支飞, 龚雪, 刘源, 牛素贞, 陈正武. 贵州栽培型地方茶树叶片气孔性状全基因组关联分析[J]. 浙江农业学报, 2023, 35(7): 1550-1563. |
[2] | 王长进, 徐运林, 程昕昕, 周毅, 余海兵. 甜玉米种子营养品质主要性状全基因组关联分析[J]. 浙江农业学报, 2020, 32(3): 383-389. |
[3] | 王晓薇, 马青. 滩羊毛色的全基因组关联分析[J]. 浙江农业学报, 2020, 32(1): 28-34. |
[4] | 卢鑫, 周靖航, 杨朝云, 张梦华, 叶连萌, 李叔臻, 黄锡霞, 马云, 王兴平, 史远刚. 新疆褐牛产奶和繁殖性状候选基因功能注释[J]. 浙江农业学报, 2019, 31(12): 1987-1995. |
[5] | 贾小平, 张博, 全建章, 王永芳, 董志平, 袁玺垒, 李剑峰. 洛阳、吉林生态区谷子抗倒伏性的全基因组关联分析[J]. 浙江农业学报, 2018, 30(12): 1981-1991. |
[6] | 王晓杜1,镡忠斌1,王鲁彦1, 何珂1,李开桢2,潘清煜2,*,周圻1,*. 猪繁殖与呼吸综合征的抗病育种研究进展 [J]. 浙江农业学报, 2014, 26(5): 1394-. |
[7] | 董文艳;陈阿琴;王争光;俞颂东;*. 湖羊高繁殖力候选基因ESR的研究[J]. , 2009, 21(6): 0-564. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||