浙江农业学报 ›› 2023, Vol. 35 ›› Issue (9): 2056-2067.DOI: 10.3969/j.issn.1004-1524.20221409
袁晓春(), 王翊帆, 王雅艳, 孙昊然, 孟科, 李新海(
)
收稿日期:
2022-09-28
出版日期:
2023-09-25
发布日期:
2023-10-09
作者简介:
李新海,E-mail:zhumei185@163.com通讯作者:
李新海
基金资助:
YUAN Xiaochun(), WANG Yifan, WANG Yayan, SUN Haoran, MENG Ke, LI Xinhai(
)
Received:
2022-09-28
Online:
2023-09-25
Published:
2023-10-09
Contact:
LI Xinhai
摘要:
可变剪接是调控动植物体内蛋白质多样性和遗传多样性的重要分子机制。为鉴定和分析杜泊羊毛囊发育过程中的可变剪接,分别于2019年9月(生长旺期,S1)、2020年1月(休止期,羊毛停止生长,S2)、2020年3月(生长初期,新羊毛生长导致旧羊毛脱落,S3)对杜泊成年母羊体侧中部皮肤组织取样,利用Illumina HiSeqTM 4000测序平台对样品进行转录组测序。利用rMATS软件鉴定样品中的可变剪接事件和差异剪接基因,在3组样品中共鉴定出128 033个可变剪接事件,其中外显子跳跃的比例最高,约占75.69%,内含子保留比例最少,约占2.03%。在S1vs S2、S1vs S3和S2vs S3中共筛选到3 448个显著(P<0.05)的差异剪接基因。GO(gene ontology)和KEGG(Kyoto Encyclopedia of Genes and Genomes)功能富集分析显示,差异剪接基因显著富集在血管内皮生长因子(VEGF)信号通路、丝裂原活化蛋白激酶(MAPK)信号通路、PI3K-Akt信号通路、Rap1(RAS-related protein 1)信号通路、Hippo信号通路、神经营养因子信号通路等与毛囊发育密切相关的通路上,表明筛选到的差异剪接基因在杜泊羊毛囊发育过程中发挥重要作用。并进一步筛选出可能参与绵羊毛囊发育相关的关键基因(SMAD2、FGFR2、BMP4、BCL2等)。本研究通过分析杜泊羊毛囊发育过程中的AS事件,揭示绵羊毛囊发育和羊毛呈周期性循环过程中相关遗传调控机制,研究结果可以为后续开展绵羊毛囊发育与羊毛生长呈周期性变化中发育相关基因功能分析与挖掘提供理论基础。
中图分类号:
袁晓春, 王翊帆, 王雅艳, 孙昊然, 孟科, 李新海. 基于RNA测序技术鉴定和分析绵羊毛囊发育相关的可变剪接事件[J]. 浙江农业学报, 2023, 35(9): 2056-2067.
YUAN Xiaochun, WANG Yifan, WANG Yayan, SUN Haoran, MENG Ke, LI Xinhai. Identification and analysis of alternative splicing events related to sheep hair follicle development based on RNA sequencing technology[J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2056-2067.
基因Gene | 正向引物Forward primer (5’→3’) | 反向引物Reverse primer (5’→3’) | 大小Size/bp |
---|---|---|---|
MT1C | CCCTCCTGCAAGAAGAGC | CACAGCAGCTGCACTTGTC | 103 |
KRT23 | TAGCAGATGGCAAGGTAAACAA | GTCAGATCATCCAGGGTCTTTC | 160 |
S100A14 | AGACCCTGATCAAGAATTTCCA | CCGAACTCCAGTTTAGAGTCGT | 178 |
TPRXL | ATGCTCCCAGTGAAAGTACAGA | TCCATCTCACTGATAACTCAGCA | 151 |
RPL6 | GCCTCGGAAACTGTTGAGTC | GAGGCCCAGTCACAAGTAGC | 173 |
GAPDH | TCCACGGCACAGTCAAGG | CACGCCCATCACAAACAT | 239 |
RPL13 | GTCAGGTACCACACGAAGGTT | CACCGAGATCCCAATGGTC | 105 |
表1 实时荧光定量引物列表
Table 1 List of real-time fluorescent quantitative primers
基因Gene | 正向引物Forward primer (5’→3’) | 反向引物Reverse primer (5’→3’) | 大小Size/bp |
---|---|---|---|
MT1C | CCCTCCTGCAAGAAGAGC | CACAGCAGCTGCACTTGTC | 103 |
KRT23 | TAGCAGATGGCAAGGTAAACAA | GTCAGATCATCCAGGGTCTTTC | 160 |
S100A14 | AGACCCTGATCAAGAATTTCCA | CCGAACTCCAGTTTAGAGTCGT | 178 |
TPRXL | ATGCTCCCAGTGAAAGTACAGA | TCCATCTCACTGATAACTCAGCA | 151 |
RPL6 | GCCTCGGAAACTGTTGAGTC | GAGGCCCAGTCACAAGTAGC | 173 |
GAPDH | TCCACGGCACAGTCAAGG | CACGCCCATCACAAACAT | 239 |
RPL13 | GTCAGGTACCACACGAAGGTT | CACCGAGATCCCAATGGTC | 105 |
样品名 Sample name | 原始读段 Raw reads | 干净读段 Clean reads | Q30/% | GC含量 GC content/% | 唯一对比到的read数占比 Unique_mapped reads ratio/% | 对比率 Total_mapped ratio/% |
---|---|---|---|---|---|---|
S1-1 | 80 305 380 | 80 151 468 | 92.90 | 48.51 | 85.82 | 93.65 |
S1-2 | 88 681 572 | 88 514 636 | 93.52 | 50.33 | 84.78 | 96.29 |
S1-3 | 88 639 604 | 88 435 920 | 93.76 | 50.48 | 84.18 | 95.94 |
S1-4 | 82 302 900 | 82 082 050 | 93.75 | 52.49 | 80.81 | 96.52 |
S1-5 | 95 132 446 | 94 861 532 | 93.53 | 50.14 | 83.97 | 95.97 |
S2-1 | 101 606 896 | 101 305 036 | 93.08 | 49.02 | 87.06 | 95.82 |
S2-2 | 111 482 124 | 111 138 096 | 93.53 | 50.04 | 85.72 | 96.13 |
S2-3 | 78 132 386 | 77 918 790 | 94.08 | 49.78 | 86.16 | 96.70 |
S2-4 | 88 934 292 | 88 662 238 | 93.50 | 51.37 | 81.77 | 94.38 |
S2-5 | 88 841 684 | 88 527 154 | 93.48 | 50.42 | 85.05 | 95.57 |
S3-1 | 94 155 288 | 93 804 848 | 92.47 | 51.43 | 83.88 | 95.15 |
S3-2 | 100 794 688 | 100 434 556 | 93.45 | 50.76 | 82.96 | 94.34 |
S3-3 | 79 139 424 | 78 899 488 | 94.13 | 51.69 | 80.02 | 95.91 |
S3-4 | 79 187 140 | 78 889 182 | 93.51 | 53.35 | 82.35 | 94.68 |
S3-5 | 80 678 998 | 80 361 468 | 93.72 | 51.84 | 77.34 | 92.41 |
表2 测序数据质量评估及与参考基因组的对比
Table 2 Quality assessment of sequencing data and comparison with reference genome
样品名 Sample name | 原始读段 Raw reads | 干净读段 Clean reads | Q30/% | GC含量 GC content/% | 唯一对比到的read数占比 Unique_mapped reads ratio/% | 对比率 Total_mapped ratio/% |
---|---|---|---|---|---|---|
S1-1 | 80 305 380 | 80 151 468 | 92.90 | 48.51 | 85.82 | 93.65 |
S1-2 | 88 681 572 | 88 514 636 | 93.52 | 50.33 | 84.78 | 96.29 |
S1-3 | 88 639 604 | 88 435 920 | 93.76 | 50.48 | 84.18 | 95.94 |
S1-4 | 82 302 900 | 82 082 050 | 93.75 | 52.49 | 80.81 | 96.52 |
S1-5 | 95 132 446 | 94 861 532 | 93.53 | 50.14 | 83.97 | 95.97 |
S2-1 | 101 606 896 | 101 305 036 | 93.08 | 49.02 | 87.06 | 95.82 |
S2-2 | 111 482 124 | 111 138 096 | 93.53 | 50.04 | 85.72 | 96.13 |
S2-3 | 78 132 386 | 77 918 790 | 94.08 | 49.78 | 86.16 | 96.70 |
S2-4 | 88 934 292 | 88 662 238 | 93.50 | 51.37 | 81.77 | 94.38 |
S2-5 | 88 841 684 | 88 527 154 | 93.48 | 50.42 | 85.05 | 95.57 |
S3-1 | 94 155 288 | 93 804 848 | 92.47 | 51.43 | 83.88 | 95.15 |
S3-2 | 100 794 688 | 100 434 556 | 93.45 | 50.76 | 82.96 | 94.34 |
S3-3 | 79 139 424 | 78 899 488 | 94.13 | 51.69 | 80.02 | 95.91 |
S3-4 | 79 187 140 | 78 889 182 | 93.51 | 53.35 | 82.35 | 94.68 |
S3-5 | 80 678 998 | 80 361 468 | 93.72 | 51.84 | 77.34 | 92.41 |
可变剪接事件类型 Type of AS | AS相关基因数 Number of AS related gene | 可变剪接数量 Number of AS events | 差异可变剪接事件数量,括号中为(上调:下调) Number of differential alternative splicing events (upregulation:downregulation) |
---|---|---|---|
外显子跳跃SE 外显子互斥MXE 5'端可变剪接A5SS 3'端可变剪接A3SS 内含子保留RI 总数Total | 2 169 303 287 484 205 3 448 | 96 906 14 467 4 837 9 220 2 603 128 033 | 2 588(1 077∶1 511) 350(182∶168) 299(153∶146) 524(248∶176) 212(77∶135) 3 973(1 737∶2 136) |
表3 绵羊毛囊不同时期AS 差异分析统计
Table 3 The statistical analysis of AS differences in sheep follicles in different periods
可变剪接事件类型 Type of AS | AS相关基因数 Number of AS related gene | 可变剪接数量 Number of AS events | 差异可变剪接事件数量,括号中为(上调:下调) Number of differential alternative splicing events (upregulation:downregulation) |
---|---|---|---|
外显子跳跃SE 外显子互斥MXE 5'端可变剪接A5SS 3'端可变剪接A3SS 内含子保留RI 总数Total | 2 169 303 287 484 205 3 448 | 96 906 14 467 4 837 9 220 2 603 128 033 | 2 588(1 077∶1 511) 350(182∶168) 299(153∶146) 524(248∶176) 212(77∶135) 3 973(1 737∶2 136) |
图1 杜泊羊毛囊不同发育时期差异可变剪接基因数量 S1,2019年9月(生长旺期)采样;S2,2020年1月(休止期)采样;S3,2020年3月(生长初期)采样。SE,外显子跳跃;RI,内含子滞留;MXE,外显子互斥;A5SS,5’端可变剪接;A3SS,3’端可变剪接。下同。
Fig.1 Number of differentially spliced genes in Dorper wool follicles at different developmental stages S1, Sampling in September 2019 (growth peak period); S2, Sampling in January 2020 (telogen); S3, Sampling in March 2020 (early stage of growth). SE, Skipping exon; RI, Retention intro; MXE, Mutually exclusive exons; A5SS, Alternative 5’splicing site; A3SS, Alternative 3’splicing site. The same as below.
图2 杜泊羊不同时期毛囊发育差异剪接基因GO富集结果 A,S1 vs S2; B,S1 vs S3; C,S2 vs S3。绿色,细胞组分;黄色,生物学过程;蓝色,分子功能。
Fig.2 GO enrichment results of differentially spliced genes in hair follicle development at different stages of Dorper sheep A, S1 vs S2; B, S1 vs S3; C, S2 vs S3. Green, Cellular component; Yellow, Biological process; Blue, Molecular function.
图3 杜泊羊不同时期毛囊发育差异剪接基因KEGG富集结果前30条通路
Fig.3 Top 30 pathways of splicing gene KEGG enrichment results in different stages of hair follicle development in Dorper sheep A, S1vs S2; B, S1vs S3; C, S2vs S3.
主要富集通路的名称 Names of major enrichment pathways | 主要通路所富集的基因 Genes enriched by major pathways |
---|---|
剪接体Spliceosome 内吞作用Endocytosis 丝裂原活化蛋白激酶信号通路Mitogen activated protein kinase signaling pathway 血管内皮生长因子信号通路Vascular endothelial growth factor signaling pathway 河马信号通路Hippo signaling pathway Rap1信号通路RAS-related protein 1 signaling pathway 细胞外基质-受体相互作用Extracellular matrix-receptor interaction 哺乳动物雷帕霉素靶点信号通路mTOR signaling pathway PI3K-Akt信号通路Phosphatidylinositol-3-kinase-Akt signaling pathway NF-kappaB信号通路Nuclear factor-kappa B signaling pathway 神经营养因子信号通路Neurotrophin signaling pathway | PRL1、SFRS7、PUF60、U2AF1 PIP5K、SMAD2、KIF5、FGFR2、DAB2 BRAF、MAP4K4、STK3、P38、ATF2 PPP3C、SPHK、PXN、PLA2G4 CTNNB1、PARD3、BMP4 PARD3、RAP1A、CSF1、AIP3 COL4A、LAMB2、CD44、CD47 BRAF、CLIP1、LPIN GSK3B、EGFR、GHR、CSF1 BCL2、CSNK2A、NFKB2、BTK FOXO3、BRAF、B-Raf |
表4 与毛囊发育相关的差异剪接基因KEGG通路富集
Table 4 Enrichment of differentially spliced genes KEGG pathway related to hair follicle development
主要富集通路的名称 Names of major enrichment pathways | 主要通路所富集的基因 Genes enriched by major pathways |
---|---|
剪接体Spliceosome 内吞作用Endocytosis 丝裂原活化蛋白激酶信号通路Mitogen activated protein kinase signaling pathway 血管内皮生长因子信号通路Vascular endothelial growth factor signaling pathway 河马信号通路Hippo signaling pathway Rap1信号通路RAS-related protein 1 signaling pathway 细胞外基质-受体相互作用Extracellular matrix-receptor interaction 哺乳动物雷帕霉素靶点信号通路mTOR signaling pathway PI3K-Akt信号通路Phosphatidylinositol-3-kinase-Akt signaling pathway NF-kappaB信号通路Nuclear factor-kappa B signaling pathway 神经营养因子信号通路Neurotrophin signaling pathway | PRL1、SFRS7、PUF60、U2AF1 PIP5K、SMAD2、KIF5、FGFR2、DAB2 BRAF、MAP4K4、STK3、P38、ATF2 PPP3C、SPHK、PXN、PLA2G4 CTNNB1、PARD3、BMP4 PARD3、RAP1A、CSF1、AIP3 COL4A、LAMB2、CD44、CD47 BRAF、CLIP1、LPIN GSK3B、EGFR、GHR、CSF1 BCL2、CSNK2A、NFKB2、BTK FOXO3、BRAF、B-Raf |
[1] | HOUSCHYAR K S, BORRELLI M R, TAPKING C, et al. Molecular mechanisms of hair growth and regeneration: current understanding and novel paradigms[J]. Dermatology, 2020, 236(4): 271-280. |
[2] | 张崇志, 孙海洲, 李胜利, 等. 光照和日粮能量干预对绒山羊消化率、毛囊活性和产绒性能的影响[J]. 家畜生态学报, 2017, 38(3): 19-24. |
ZHANG C Z, SUN H Z, LI S L, et al. Effects of photoperiod and diet energy intervention on nutrient digestibility, hair follicles activity, Cashmere production for Cashmere goats[J]. Journal of Domestic Animal Ecology, 2017, 38(3): 19-24. (in Chinese with English abstract) | |
[3] | VELTRI A, LANG C, LIEN W H. Concise review: Wnt signaling pathways in skin development and epidermal stem cells[J]. Stem Cells, 2018, 36(1): 22-35. |
[4] | IMAMURA T. Physiological functions and underlying mechanisms of fibroblast growth factor (FGF) family members: recent findings and implications for their pharmacological application[J]. Biological & Pharmaceutical Bulletin, 2014, 37(7): 1081-1089. |
[5] | AKILLI ÖZTÜRK Ö, PAKULA H, CHMIELOWIEC J, et al. Gab1 and mapk signaling are essential in the hair cycle and hair follicle stem cell quiescence[J]. Cell Reports, 2015, 13(3): 561-572. |
[6] | BOTCHKAREV V A. Bone morphogenetic proteins and their antagonists in skin and hair follicle biology[J]. Journal of Investigative Dermatology, 2003, 120(1): 36-47. |
[7] | MA T, LI J Y, LI J P, et al. Expression of miRNA-203 and its target gene in hair follicle cycle development of Cashmere goat[J]. Cell Cycle, 2021, 20(2): 204-210. |
[8] | ROGLER L E, KOSMYNA B, MOSKOWITZ D, et al. Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia[J]. Human Molecular Genetics, 2014, 23(2): 368-382. |
[9] | ZHANG Y J, WANG L L, LI Z, et al. Transcriptome profiling reveals transcriptional and alternative splicing regulation in the early embryonic development of hair follicles in the Cashmere goat[J]. Scientific Reports, 2019, 9: 17735. |
[10] | BARALLE F E, GIUDICE J. Alternative splicing as a regulator of development and tissue identity[J]. Nature Reviews Molecular Cell Biology, 2017, 18(7): 437-451. |
[11] | ULE J, BLENCOWE B J. Alternative splicing regulatory networks: functions, mechanisms, and evolution[J]. Molecular Cell, 2019, 76(2): 329-345. |
[12] | ZHANG S H, WU X F, PAN C Y, et al. Identification of novel isoforms of dairy goat EEF1D and their mRNA expression characterization[J]. Gene, 2016, 581(1): 14-20. |
[13] | ZHOU Y, CAI H, XU Y, et al. Novel isoforms of the bovineNuclear factor I/X (CCAAT-binding transcription factor) transcript products and their diverse expression profiles[J]. Animal Genetics, 2014, 45(4): 581-584. |
[14] | 张嘉楠. 绵羊IGF-Ⅰ基因Ⅰ类剪接体对成纤维细胞增殖及凋亡的影响[D]. 哈尔滨: 东北农业大学, 2019. |
ZHANG J N. Effect of sheep IGF-Ⅰ gene Ⅰ splice on the proliferation and apoptosis of fibroblasts[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese with English abstract) | |
[15] | 张立春, 李梦姝, 曹阳, 等. 绵羊VEGF-C基因可变剪切体克隆与序列分析[J]. 中国畜牧杂志, 2018, 54(4): 89-92. |
ZHANG L C, LI M S, CAO Y, et al. Cloning and sequence analysis of sheep VEGF-C gene variable shear body[J]. Chinese Journal of Animal Science, 2018, 54(4): 89-92. (in Chinese) | |
[16] | SHEN S H, PARK J W, LU Z X, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51): E5593-E5601. |
[17] | PARK E, PAN Z C, ZHANG Z J, et al. The expanding landscape of alternative splicing variation in human populations[J]. The American Journal of Human Genetics, 2018, 102(1): 11-26. |
[18] | BOWLER E, OLTEAN S. Alternative splicing in angiogenesis[J]. International Journal of Molecular Sciences, 2019, 20(9): 2067. |
[19] | BATES D, CUI T, DOUGHTY J M, et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma[J]. Cancer Research, 2002, 62: 4123-4131. |
[20] | QUAN R F, DU W B, ZHENG X A, et al. VEGF165 induces differentiation of hair follicle stem cells into endothelial cells and plays a role in in vivo angiogenesis[J]. Journal of Cellular and Molecular Medicine, 2017, 21(8): 1593-1604. |
[21] | 章会斌, 韩政, 刘阳光, 等. 基于RNA-seq筛选白藜芦醇致猪卵巢颗粒细胞凋亡的可变剪接基因[J]. 中国畜牧杂志, 2022, 58(8): 36-44. |
ZHANG H B, HAN Z, LIU Y G, et al. Screening of alternative splicing genes for apoptosis of porcine ovarian granulosa cells induced by resveratrol based on RNA-seq[J]. Chinese Journal of Animal Science, 2022, 58(8): 36-44. (in Chinese with English abstract) | |
[22] | 张玲. 云南高峰牛和荷斯坦牛肝脏与脾脏组织可变剪接的比较分析[D]. 昆明: 云南大学, 2021. |
ZHANG L. Comparative analysis of alternative splicing of liver and spleen between Yunnan Gaofeng cattle and Holstein cattle[D]. Kunming: Yunnan University, 2021. (in Chinese with English abstract) | |
[23] | 曾东, 余文林, 杨传红, 等. TGF-β各亚型与其受体在猪皮肤及毛囊中的表达[J]. 中国美容医学, 2009, 18(5): 641-644. |
ZENG D, YU W L, YANG C H, et al. Expression charactersitics of TGF-β isoforms and their receptor in pig skin and hair follicles[J]. Chinese Journal of Aesthetic Medicine, 2009, 18(5): 641-644. (in Chinese with English abstract) | |
[24] | CHEN Y, FAN Z M, WANG X X, et al. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration[J]. Stem Cell Research & Therapy, 2020(11):144. |
[25] | SILVIS M R, KREGER B T, LIEN W H, et al. α-Catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1[J]. Science Signaling, 2011, 4(174): e2001823. |
[26] | LI C, FENG C, MA G Y, et al. Time-course RNA-seq analysis reveals stage-specific and melatonin-triggered gene expression patterns during the hair follicle growth cycle in Capra hircus[J]. BMC Genomics, 2022, 23(1):140. |
[27] | LIU Z H, YANG F, ZHAO M, et al. The intragenic mRNA-microRNA regulatory network during telogen-anagen hair follicle transition in the Cashmere goat[J]. Scientific Reports, 2018, 8: 14227. |
[28] | REN S Y, ZHANG Y N, WANG M J C, et al. Hair growth predicts a depression-like phenotype in rats as a mirror of stress traceability[J]. Neurochemistry International, 2021, 148: 105110. |
[29] | KASUYA A, ITO T, TOKURA Y. M2 macrophages promote wound-induced hair neogenesis[J]. Journal of Dermatological Science, 2018, 91(3): 250-255. |
[30] | BAI W L, DANG Y L, WANG J J, et al. Molecular characterization, expression and methylation status analysis of BMP4 gene in skin tissue of Liaoning Cashmere goat during hair follicle cycle[J]. Genetica, 2016, 144(4): 457-467. |
[31] | GEUEKE A, MANTELLATO G, KUESTER F, et al. The anti-apoptotic Bcl-2 protein regulates hair follicle stem cell function[J]. EMBO Reports, 2021, 22(10): e52301. |
[1] | 聂玮, 孟科, 荣轩, 强浩, 郭晨浩, 陶毛孩, 冯登侦. 绵羊GRM1基因多态性及其与肉质性状的相关性[J]. 浙江农业学报, 2023, 35(4): 799-808. |
[2] | 白俊艳, 曹恒, 王旭, 杨又兵, 樊红灯, 付学言, 时坤鹏, 董智豪, 卢小宁, 李新月, 郝伟光, 李子衡, 郑飞扬. 绵羊GH基因的Pvu Ⅱ 位点的多态性与其生长性状的关联分析[J]. 浙江农业学报, 2019, 31(9): 1416-1422. |
[3] | 尹潇潇, 李燕方, 古江, 廖艳, 谢跃, 杨光友, 古小彬. 基于线粒体ATP6基因全序列分析中国绵羊痒螨(兔亚种)的遗传多样性[J]. 浙江农业学报, 2019, 31(8): 1231-1238. |
[4] | 李文丽, 杜晓华, 刘霞, 高景波, 申超超, 张超, 刘伟. 藏绵羊FAM134B基因克隆与表达分析[J]. 浙江农业学报, 2017, 29(9): 1474-1481. |
[5] | 高建锋, 卢曾奎, 马友记, 李讨讨, 赵兴绪. 绵羊MUSTN1基因的克隆、序列分析及其组织表达[J]. 浙江农业学报, 2017, 29(10): 1661-1668. |
[6] | 王华,王建福,王欣荣,成述儒*,李晓梅,王志明,樊庆山,富丽霞,李双,周晓霞. 5个绵羊品种CAST基因多态性及其与肉品质的相关性[J]. 浙江农业学报, 2016, 28(8): 1309-. |
[7] | 乔利敏;郭彤;乔富强;姚华;*;张京和;雷莉辉;关伟军;*;侯引绪. 绵羊卵巢运输、保存温度及时间对其卵母细胞孤雌发育能力的影响[J]. , 2012, 24(4): 0-566. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||