[1] |
HURSH A, BALLANTYNE A, COOPER L, et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale[J]. Global Change Biology, 2017, 23(5): 2090-2103.
|
[2] |
JASSAL R S, BLACK T A, NESIC Z, et al. Using automated non-steady-state chamber systems for making continuous long-term measurements of soil CO2 efflux in forest ecosystems[J]. Agricultural and Forest Meteorology, 2012, 161: 57-65.
|
[3] |
LASHOF D A, AHUJA D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266): 529-531.
|
[4] |
LUO Y, ZHOU X. Soil respiration and the environment[M]. Burlington: Elsevier Science, 2010.
|
[5] |
XU M, SHANG H. Contribution of soil respiration to the global carbon equation[J]. Journal of Plant Physiology, 2016, 203: 16-28.
|
[6] |
KUTSCH W, BAHN M, HEINEMEYER A. Soil carbon dynamics: an integrated methodology[M]. Cambridge, UK: Cambridge University Press, 2009.
|
[7] |
BALDOCCHI D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future[J]. Global Change Biology, 2003, 9(4): 479-492.
|
[8] |
MAIER M, SCHACK-KIRCHNER H. Using the gradient method to determine soil gas flux: a review[J]. Agricultural and Forest Meteorology, 2014, 192/193: 78-95.
|
[9] |
HATFIELD J L, BAKER J M, VINEY M K. Micrometeorology in agricultural systems[M]. Madison: American Society of Agronomy, 2005.
|
[10] |
NAKAYAMA F S. Soil respiration[J]. Remote Sensing Reviews, 1990, 5(1): 311-321.
|
[11] |
BEKKU Y, KOIZUMI H, OIKAWA T, et al. Examination of four methods for measuring soil respiration[J]. Applied Soil Ecology, 1997, 5(3): 247-254.
|
[12] |
GÖRRES C M, KAMMANN C, CEULEMANS R. Automation of soil flux chamber measurements: potentials and pitfalls[J]. Biogeosciences, 2016, 13(6): 1949-1966.
|
[13] |
FUJIUCHI N, INABA K, KANOH T, et al. Method to calculate net CO2 exchange rate of whole plants under continuously increasing or decreasing CO2 concentrations in a greenhouse using a real-time photosynthesis and transpiration monitoring system[J]. Environment Control in Biology, 2022, 60(1): 13-21.
|
[14] |
HEGER A, KLEINSCHMIDT V, GRÖNGRÖFT A, et al. Application of a low-cost NDIR sensor module for continuous measurements of in situ soil CO2 concentration[J]. Journal of Plant Nutrition and Soil Science, 2020, 183(5): 557-561.
|
[15] |
CURCOLL R, MORGUÍ J A, KAMNANG A, et al. Metrology for low-cost CO2 sensors applications: the case of a steady-state through-flow (SS-TF) chamber for CO2 fluxes observations[J]. Atmospheric Measurement Techniques, 2022, 15(9): 2807-2818.
|
[16] |
FANG C, MONCRIEFF J B. An open-top chamber for measuring soil respiration and the influence of pressure difference on CO2 efflux measurement[J]. Functional Ecology, 1998, 12(2): 319-325.
|
[17] |
PUMPANEN J, ILVESNIEMI H, KERONEN P, et al. An open chamber system for measuring soil surface CO2 efflux: analysis of error sources related to the chamber system[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D8): 7985-7992.
|
[18] |
GAO F, YATES S R. Simulation of enclosure-based methods for measuring gas emissions from soil to the atmosphere[J]. Journal of Geophysical Research: Atmospheres, 1998, 103(D20): 26127-26136.
|
[19] |
REICHMAN R, ROLSTON D E. Design and performance of a dynaniic gas flux chamber[J]. Journal of Environmental Quality, 2002, 31(6): 1774-1781.
|
[20] |
AUBINET M, VESALA T, PAPALE D. Eddy covariance: a practical guide to measurement and data analysis[M]. Dordrecht: Springer Netherlands, 2012.
|
[21] |
RIVEROS-IREGUI D A, MCGLYNN B L, EPSTEIN H E, et al. Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: discrete surface chambers and continuous soil CO2 concentration probes[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113: G04027.
|
[22] |
ALFONSI G. Reynolds-averaged navier-stokes equations for turbulence modeling[J]. Applied Mechanics Reviews, 2009, 62(4): 1.
|
[23] |
LIN C J, ZHU W, LI X C, et al. Novel dynamic flux chamber for measuring air-surface exchange of Hgo from soils[J]. Environmental Science & Technology, 2012, 46(16): 8910-8920.
|
[24] |
MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[EB/OL]. (2014-07-16) [2022-10-24]. https://www.researchgate.net/profile/Florian-Menter/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model/links/0046353c6330b1c0a4000000/Ten-years-of-industrial-experience-with-the-SST-turbulence-model.pdf.
|
[25] |
WALLACE J M, HOBBS P V. Atmospheric science: an introductory survey[M]. 2nd ed. Burlington, MA: Elsevier Academic Press, 2006.
|
[26] |
AL MAKKY A, ALASWAD A, GIBSON D, et al. A numerical and experimental study of a new design of closed dynamic respiration chamber[J]. Computers and Electronics in Agriculture, 2018, 145: 326-340.
|
[27] |
CARTER M R, GREGORICH E G. Soil sampling and methods of analysis[M]. 2nd ed. Boca Raton, FL, US: CRC Press, 2007.
|
[28] |
NAZAROFF W W. Radon transport from soil to air[J]. Reviews of Geophysics, 1992, 30(2): 137.
|
[29] |
BAHN M, RODEGHIERO M, ANDERSON-DUNN M, et al. Soil respiration in European grasslands in relation to climate and assimilate supply[J]. Ecosystems, 2008, 11(8): 1352-1367.
|
[30] |
KODINARIYA T, MAKWANA P. Review on determining of cluster in k-means clustering[J]. International Journal of Advance Research in Computer Science and Management Studies, 2013, 1(6): 90-95.
|
[31] |
MADSEN R, XU L K, CLAASSEN B, et al. Surface monitoring method for carbon capture and storage projects[J]. Energy Procedia, 2009, 1(1): 2161-2168.
|
[32] |
ROCHETTE P, GREGORICH E G, DESJARDINS R L. Comparison of static and dynamic closed chambers for measurement of soil respiration under field conditions[J]. Canadian Journal of Soil Science, 1992, 72(4): 605-609.
|
[33] |
JIANG J J, YIN W J, HU J G, et al. Study of a calibration system for soil respiration measurement chambers[J]. Environmental Research Communications, 2022, 4(9): 095006.
|