[1] |
杨丽梅, 方智远, 张扬勇, 等. “十三五”我国甘蓝遗传育种研究进展[J]. 中国蔬菜, 2021(1): 15-21.
|
|
YANG L M, FANG Z Y, ZHANG Y Y, et al. Research progress on cabbage genetic breeding during The Thirteenth Five-year Plan’ in China[J]. China Vegetables, 2021(1): 15-21. (in Chinese)
|
[2] |
吕红豪, 方智远, 杨丽梅, 等. 甘蓝枯萎病抗源材料筛选及抗性遗传研究[J]. 园艺学报, 2011, 38(5): 875-885.
|
|
LÜ H H, FANG Z Y, YANG L M, et al. Research on screening of resistant resources to Fusarium wilt and inheritance of the resistant gene in cabbage[J]. Acta Horticulturae Sinica, 2011, 38(5): 875-885. (in Chinese with English abstract)
|
[3] |
PAUGH K R, GORDON T R. The population of Fusarium oxysporum f. sp. lactucae in California and Arizona[J]. Plant Disease, 2020, 104(6): 1811-1816.
|
[4] |
CHAKRABORTY N. Salicylic acid and nitric oxide cross-talks to improve innate immunity and plant vigor in tomato against Fusarium oxysporum stress[J]. Plant Cell Reports, 2021, 40(8): 1415-1427.
|
[5] |
CHANG H X, NOEL Z A, CHILVERS M I. A β-lactamase gene of Fusarium oxysporum alters the rhizosphere microbiota of soybean[J]. The Plant Journal: for Cell and Molecular Biology, 2021, 106(6): 1588-1604.
|
[6] |
LI C Y, ZUO C W, DENG G M, et al. Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense[J]. PLoS One, 2013, 8(7): e70226.
|
[7] |
LI B, GAO Y, MAO H Y, et al. The SNARE protein FolVam7 mediates intracellular trafficking to regulate conidiogenesis and pathogenicity in Fusarium oxysporum f. sp. lycopersici[J]. Environmental Microbiology, 2019, 21(8): 2696-2706.
|
[8] |
GAO T, ZHENG Z T, HOU Y P, et al. Transcription factors spt3 and spt8 are associated with conidiation, mycelium growth, and pathogenicity in Fusarium graminearum[J]. FEMS Microbiology Letters, 2014, 351(1): 42-50.
|
[9] |
ZURIEGAT Q, ZHENG Y R, LIU H, et al. Current progress on pathogenicity-related transcription factors in Fusarium oxysporum[J]. Molecular Plant Pathology, 2021, 22(7): 882-895.
|
[10] |
SINGHANIA R R, PATEL A K, SUKUMARAN R K, et al. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production[J]. Bioresource Technology, 2013, 127: 500-507.
|
[11] |
VOLKOV P V, ROZHKOVA A M, ZOROV I N, et al. Cloning, purification and study of recombinant GH3 family β-glucosidase from Penicillium verruculosum[J]. Biochimie, 2020, 168: 231-240.
|
[12] |
MOHSIN I, POUDEL N, LI D C, et al. Crystal structure of a GH3 β-glucosidase from the thermophilic fungus Chaetomium thermophilum[J]. International Journal of Molecular Sciences, 2019, 20(23): 5962.
|
[13] |
DAVIES G J, GLOSTER T M, HENRISSAT B. Recent structural insights into the expanding world of carbohydrate-active enzymes[J]. Current Opinion in Structural Biology, 2005, 15(6): 637-645.
|
[14] |
HIMMEL M E, DING S Y, JOHNSON D K, et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production[J]. Science, 2007, 315(5813): 804-807.
|
[15] |
CALERO-NIETO F, DI PIETRO A, RONCERO M I, et al. Role of the transcriptional activator xlnR of Fusarium oxysporum in regulation of xylanase genes and virulence[J]. Molecular Plant-Microbe Interactions, 2007, 20(8): 977-985.
|
[16] |
HUANG Y, YU C L, SUN C C, et al. β-glucosidase VmGlu2 contributes to the virulence of Valsa mali in apple tree[J]. Frontiers in Microbiology, 2021, 12: 695112.
|
[17] |
SOLOMON P S, IPCHO S V S, HANE J K, et al. A quantitative PCR approach to determine gene copy number[J]. Fungal Genetics Reports, 2008, 55(1): 5-8.
|
[18] |
LI E F, WANG G, YANG Y H, et al. Microscopic analysis of the compatible and incompatible interactions between Fusarium oxysporum f. sp. conglutinans and cabbage[J]. European Journal of Plant Pathology, 2015, 141(3): 597-609.
|
[19] |
LOU H W, YE Z W, YUN F, et al. Targeted gene deletion in Cordyceps militaris using the split-marker approach[J]. Molecular Biotechnology, 2018, 60(5): 380-385.
|
[20] |
ZHOU C S, QIAN L C, MA H L, et al. Enhancement of amygdalin activated with β-D-glucosidase on HepG2 cells proliferation and apoptosis[J]. Carbohydrate Polymers, 2012, 90(1): 516-523.
|
[21] |
BIVER S, STROOBANTS A, PORTETELLE D, et al. Two promising alkaline β-glucosidases isolated by functional metagenomics from agricultural soil, including one showing high tolerance towards harsh detergents, oxidants and glucose[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(3): 479-488.
|
[22] |
ZHANG Z Q, CHEN Y, LI B Q, et al. Reactive oxygen species: a generalist in regulating development and pathogenicity of phytopathogenic fungi[J]. Computational and Structural Biotechnology Journal, 2020, 18: 3344-3349.
|
[23] |
MONTIBUS M, PINSON-GADAIS L, RICHARD-FORGET F, et al. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi[J]. Critical Reviews in Microbiology, 2015, 41(3): 295-308.
|
[24] |
KARKEHABADI S, HANSSON H, MIKKELSEN N E, et al. Structural studies of a glycoside hydrolase family 3 β-glucosidase from the model fungus Neurospora crassa[J]. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74(Pt 12): 787-796.
|