浙江农业学报 ›› 2024, Vol. 36 ›› Issue (4): 968-977.DOI: 10.3969/j.issn.1004-1524.20230563
路子琪1,2(), 王静2, 张震2, 王教瑜2,*(
), 孙国仓2, 林福呈2
收稿日期:
2023-07-27
出版日期:
2024-04-25
发布日期:
2024-04-29
作者简介:
路子琪(1999—),女,山西长治人,硕士,研究方向为真菌分子生物学研究。E-mail: luziqi18234559092@163.com
通讯作者:
*王教瑜,E-mail:wangjiaoyu78@sina.com
基金资助:
LU Ziqi1,2(), WANG Jing2, ZHANG Zhen2, WANG Jiaoyu2,*(
), SUN Guocang2, LIN Fucheng2
Received:
2023-07-27
Online:
2024-04-25
Published:
2024-04-29
Contact:
WANG Jiaoyu
摘要:
化学农药的大量使用产生的病虫害抗性、环境污染和农产品安全等一系列问题,使得新型可持续的植物保护策略成为农业绿色发展的必然要求。近年来,RNAi在植物病虫害防控中的应用潜力得到越来越多的关注,基于RNAi的生物农药(即核酸农药)的研发越来越迅速。核酸农药以喷雾诱导基因沉默(SIGS)为基础,通过外源施用针对靶标病原菌或害虫的dsRNA,即可触发RNAi从而抑制病原菌或害虫,实现对靶标病虫害特异性控制。由于核酸农药具靶标特异性、环境友好、不易产生抗性等优势,相关研究和开发进程日益加快,使之有望成为化学农药的重要补充或替代。文章对核酸农药的作用机制、研究进展、产品研发和应用现状,在商业化和使用过程中的风险以及需要注意的问题进行了综述,以期为相关研究提供参考。
中图分类号:
路子琪, 王静, 张震, 王教瑜, 孙国仓, 林福呈. 基于RNAi的生物农药研究进展[J]. 浙江农业学报, 2024, 36(4): 968-977.
LU Ziqi, WANG Jing, ZHANG Zhen, WANG Jiaoyu, SUN Guocang, LIN Fucheng. Research progress of biopesticides based on RNAi[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 968-977.
[1] | WANG H L, LIU H, WANG D Y. Agricultural insurance, climate change, and food security: evidence from Chinese farmers[J]. Sustainability, 2022, 14(15): 9493. |
[2] | FAO. FAO’s director-general on how to feed the world in 2050[J]. Population and Development Review, 2009, 35(4): 837-839. |
[3] | ALEXANDER P, BROWN C, ARNETH A, et al. Losses, inefficiencies and waste in the global food system[J]. Agricultural Systems, 2017, 153: 190-200. |
[4] | RANK A P, KOCH A. Lab-to-field transition of RNA spray applications—how far are we?[J]. Frontiers in Plant Science, 2021, 12: 755203. |
[5] | TUDI M, RUAN H D, WANG L, et al. Agriculture development, pesticide application and its impact on the environment[J]. International Journal of Environmental Research and Public Health, 2021, 18(3): 1112. |
[6] | WYTINCK N, MANCHUR C L, LI V H, et al. dsRNA uptake in plant pests and pathogens: insights into RNAi-based insect and fungal control technology[J]. Plants, 2020, 9(12): 1780. |
[7] | CAGLIARI D, DIAS N P, GALDEANO D M, et al. Management of pest insects and plant diseases by non-transformative RNAi[J]. Frontiers in Plant Science, 2019, 10: 1319. |
[8] | HAN H Y. RNA interference to knock down gene expression[J]. Methods in Molecular Biology, 2018, 1706: 293-302. |
[9] | NAPOLI C, LEMIEUX C, JORGENSEN R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans[J]. The Plant Cell, 1990, 2(4): 279-289. |
[10] | ROMANO N, MACINO G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences[J]. Molecular Microbiology, 1992, 6(22): 3343-3353. |
[11] | GUO S, KEMPHUES K J. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed[J]. Cell, 1995, 81(4): 611-620. |
[12] | FIRE A, XU S Q, MONTGOMERY M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669): 806-811. |
[13] | MEISTER G, TUSCHL T. Mechanisms of gene silencing by double-stranded RNA[J]. Nature, 2004, 431(7006): 343-349. |
[14] | TOMARI Y, DU T T, ZAMORE P D. Sorting of Drosophila small silencing RNAs[J]. Cell, 2007, 130(2): 299-308. |
[15] | MATRANGA C, TOMARI Y, SHIN C, et al. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes[J]. Cell, 2005, 123(4): 607-620. |
[16] | MIYOSHI K, TSUKUMO H, NAGAMI T, et al. Slicer function of Drosophila Argonautes and its involvement in RISC formation[J]. Genes & Development, 2005, 19(23): 2837-2848. |
[17] | AGRAWAL N, DASARADHI P V N, MOHMMED A, et al. RNA interference: biology, mechanism, and applications[J]. Microbiology and Molecular Biology Reviews: MMBR, 2003, 67(4): 657-685. |
[18] | HUVENNE H, SMAGGHE G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review[J]. Journal of Insect Physiology, 2010, 56(3): 227-235. |
[19] | PREALL J B, SONTHEIMER E J. RNAi: RISC gets loaded[J]. Cell, 2005, 123(4): 543-545. |
[20] | MATRANGA C, ZAMORE P D. Small silencing RNAs[J]. Current Biology, 2007, 17(18): R789-R793. |
[21] | LIPPMAN Z, MARTIENSSEN R. The role of RNA interference in heterochromatic silencing[J]. Nature, 2004, 431(7006): 364-370. |
[22] | DUBROVINA A S, KISELEV K V. Exogenous RNAs for gene regulation and plant resistance[J]. International Journal of Molecular Sciences, 2019, 20(9): 2282. |
[23] | TENLLADO F, DÍAZ-RUÍZ J R. Double-stranded RNA-mediated interference with plant virus infection[J]. Journal of Virology, 2001, 75(24): 12288-12297. |
[24] | YIN G H, SUN Z N, LIU N, et al. Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system[J]. Applied Microbiology and Biotechnology, 2009, 84(2): 323-333. |
[25] | GAN D F, ZHANG J, JIANG H B, et al. Bacterially expressed dsRNA protects maize against SCMV infection[J]. Plant Cell Reports, 2010, 29(11): 1261-1268. |
[26] | KONAKALLA N C, KALDIS A, BERBATI M, et al. Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco[J]. Planta, 2016, 244(4): 961-969. |
[27] | NIEHL A, SOININEN M, PORANEN M M, et al. Synthetic biology approach for plant protection using dsRNA[J]. Plant Biotechnology Journal, 2018, 16(9): 1679-1687. |
[28] | KENNERDELL J R, CARTHEW R W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway[J]. Cell, 1998, 95(7): 1017-1026. |
[29] | BETTENCOURT R, TERENIUS O, FAYE I. Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos[J]. Insect Molecular Biology, 2002, 11(3): 267-271. |
[30] | DIETZL G, CHEN D, SCHNORRER F, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila[J]. Nature, 2007, 448(7150): 151-156. |
[31] | ARAUJO R N, SANTOS A, PINTO F S, et al. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus(Hemiptera: Reduviidae) by dsRNA ingestion or injection[J]. Insect Biochemistry and Molecular Biology, 2006, 36(9): 683-693. |
[32] | TURNER C T, DAVY M W, MACDIARMID R M, et al. RNA interference in the light brown apple moth, Epiphyas postvittana(Walker) induced by double-stranded RNA feeding[J]. Insect Molecular Biology, 2006, 15(3): 383-391. |
[33] | YOON J S, SHUKLA J N, GONG Z J, et al. RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: identification of key contributors[J]. Insect Biochemistry and Molecular Biology, 2016, 78: 78-88. |
[34] | BRUTSCHER L M, DAUGHENBAUGH K F, FLENNIKEN M L. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense[J]. Scientific Reports, 2017, 7: 6448. |
[35] | HEIGWER F, PORT F, BOUTROS M. RNA interference (RNAi) screening in Drosophila[J]. Genetics, 2018, 208(3): 853-874. |
[36] | LIU Z Y, CHEN Y X, RAO Y. An RNAi screen for secreted factors and cell-surface players in coordinating neuron and glia development in Drosophila[J]. Molecular Brain, 2020, 13(1): 1. |
[37] | GONG L, CHEN Y, HU Z, et al. Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions[J]. PLoS One, 2013, 8(5): e62990. |
[38] | HUNTER W B, GLICK E, PALDI N, et al. Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression[J]. Southwestern Entomologist, 2012, 37(1): 85-87. |
[39] | DE ANDRADE E C, HUNTER W B. RNA interference-natural gene-based technology for highly specific pest control (HiSPeC)[M]// RNA Interference. InTech, 2016 |
[40] | MILLER S C, MIYATA K, BROWN S J, et al. Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: parameters affecting the efficiency of RNAi[J]. PLoS One, 2012, 7(10): e47431. |
[41] | VÉLEZ A M, FISHILEVICH E. The mysteries of insect RNAi: a focus on dsRNA uptake and transport[J]. Pesticide Biochemistry and Physiology, 2018, 151: 25-31. |
[42] | CHRISTIAENS O, WHYARD S, VÉLEZ A M, et al. Double-stranded RNA technology to control insect pests: current status and challenges[J]. Frontiers in Plant Science, 2020, 11: 451. |
[43] | CHOUDHARY C, MEGHWANSHI K K, SHUKLA N, et al. Innate and adaptive resistance to RNAi: a major challenge and hurdle to the development of double stranded RNA-based pesticides[J]. 3 Biotech, 2021, 11(12): 498. |
[44] | KOCH A, BIEDENKOPF D, FURCH A, et al. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery[J]. PLoS Pathogens, 2016, 12(10): e1005901. |
[45] | WANG M, WEIBERG A, LIN F M, et al. Bidirectional cross-Kingdom RNAi and fungal uptake of external RNAs confer plant protection[J]. Nature Plants, 2016, 2: 16151. |
[46] | KOCH A, HÖFLE L, WERNER B T, et al. SIGS vs HIGS: a study on the efficacy of two dsRNA delivery strategies to silence Fusarium FgCYP51 genes in infected host and non-host plants[J]. Molecular Plant Pathology, 2019, 20(12): 1636-1644. |
[47] | WERNER B T, GAFFAR F Y, SCHUEMANN J, et al. RNA-spray-mediated silencing of Fusarium graminearum AGO and DCL genes improve barley disease resistance[J]. Frontiers in Plant Science, 2020, 11: 476. |
[48] | SARKAR A, ROY-BARMAN S. Spray-induced silencing of pathogenicity gene MoDES1 via exogenous double-stranded RNA can confer partial resistance against fungal blast in rice[J]. Frontiers in Plant Science, 2021, 12: 733129. |
[49] | BENNETT M, DEIKMAN J, HENDRIX B, et al. Barriers to efficient foliar uptake of dsRNA and molecular barriers to dsRNA activity in plant cells[J]. Frontiers in Plant Science, 2020, 11: 816. |
[50] | NERVA L, SANDRINI M, GAMBINO G, et al. Double-stranded RNAs (dsRNAs) as a sustainable tool against gray mold (Botrytis cinerea) in grapevine: effectiveness of different application methods in an open-air environment[J]. Biomolecules, 2020, 10(2): 200. |
[51] | SAMMONS R, IVASHUTA S, LIU H, et al. Polynucleotide molecules for gene regulation in plants. Patent 20110296556A1[P/OL]. https://patentscope2.wipo.int/search/en/detail.jsf?docId=WO2011112570, 2011. |
[52] | BOLOGNESI R, RAMASESHADRI P, ANDERSON J, et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte)[J]. PLoS One, 2012, 7(10): e47534. |
[53] | HÖFLE L, BIEDENKOPF D, WERNER B T, et al. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes[J]. RNA Biology, 2020, 17(4): 463-473. |
[54] | QIAO L L, LAN C, CAPRIOTTI L, et al. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake[J]. Plant Biotechnology Journal, 2021, 19(9): 1756-1768. |
[55] | FEINBERG E H, HUNTER C P. Transport of dsRNA into cells by the transmembrane protein SID-1[J]. Science, 2003, 301(5639): 1545-1547. |
[56] | SALEH M C, VAN RIJ R P, HEKELE A, et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing[J]. Nature Cell Biology, 2006, 8(8): 793-802. |
[57] | WANG M, THOMAS N, JIN H L. Cross-Kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection[J]. Current Opinion in Plant Biology, 2017, 38: 133-141. |
[58] | XIONG Q, YE W W, CHOI D, et al. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions: MPMI, 2014, 27(12): 1379-1389. |
[59] | MELNYK C W, MOLNAR A, BAULCOMBE D C. Intercellular and systemic movement of RNA silencing signals[J]. The EMBO Journal, 2011, 30(17): 3553-3563. |
[60] | MOLNAR A, MELNYK C, BAULCOMBE D C. Silencing signals in plants: a long journey for small RNAs[J]. Genome Biology, 2011, 12(1): 215. |
[61] | GOGOI A, SARMAH N, KALDIS A, et al. Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves[J]. Planta, 2017, 246(6): 1233-1241. |
[62] | NIU L, YAN H X, SUN Y J, et al. Nanoparticle facilitated stacked-dsRNA improves suppression of the Lepidoperan pest Chilo suppresallis[J]. Pesticide Biochemistry and Physiology, 2022, 187: 105183. |
[63] | TENLLADO F, MARTÍNEZ-GARCÍA B, VARGAS M, et al. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections[J]. BMC Biotechnology, 2003, 3: 3. |
[64] | LIM Z X, ROBINSON K E, JAIN R G, et al. Diet-delivered RNAi in Helicoverpa armigera: progresses and challenges[J]. Journal of Insect Physiology, 2016, 85: 86-93. |
[65] | MA Z Z, ZHOU H, WEI Y L, et al. A novel plasmid-Escherichia coli system produces large batch dsRNAs for insect gene silencing[J]. Pest Management Science, 2020, 76(7): 2505-2512. |
[66] | LÜ J, GUO W, CHEN S M, et al. Double-stranded RNAs targeting HvRPS18 and HvRPL13 reveal potential targets for pest management of the 28-spotted ladybeetle, Henosepilachna vigintioctopunctata[J]. Pest Management Science, 2020, 76(8): 2663-2673. |
[67] | CHEN Z J, HE J D, LUO P, et al. Production of functional double-stranded RNA using a prokaryotic expression system in Escherichia coli[J]. MicrobiologyOpen, 2019, 8(7): e00787. |
[68] | NITYAGOVSKY N N, KISELEV K V, SUPRUN A R, et al. Exogenous dsRNA induces RNA interference of a Chalcone synthase gene in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2022, 23(10): 5325. |
[69] | DELGADO-MARTÍN J, VELASCO L. An efficient dsRNA constitutive expression system in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2021, 105(16/17): 6381-6393. |
[70] | NWOKEOJI A O, NWOKEOJI E A, CHOU T, et al. A novel sustainable platform for scaled manufacturing of double-stranded RNA biopesticides[J]. Bioresources and Bioprocessing, 2022, 9(1): 107. |
[71] | WHITTEN M M A, FACEY P D, DEL SOL R, et al. Symbiont-mediated RNA interference in insects[J]. Proceedings Biological Sciences, 2016, 283(1825): 20160042. |
[72] | HASHIRO S, CHIKAMI Y, KAWAGUCHI H, et al. Efficient production of long double-stranded RNAs applicable to agricultural pest control by Corynebacterium glutamicum equipped with coliphage T7-expression system[J]. Applied Microbiology and Biotechnology, 2021, 105(12): 4987-5000. |
[73] | DUMAN-SCHEEL M. Saccharomyces cerevisiae(baker’s yeast) as an interfering RNA expression and delivery system[J]. Current Drug Targets, 2019, 20(9): 942-952. |
[74] | PARK M G, CHOI J Y, PARK D H, et al. Simultaneous control of sacbrood virus (SBV) and Galleria mellonella using a Bt strain transformed to produce dsRNA targeting the SBV vp1 gene[J]. Entomologia Generalis, 2021, 41(3): 233-242. |
[75] | HAPAIRAI L K, MYSORE K, CHEN Y Y, et al. Lure-and-kill yeast interfering RNA larvicides targeting neural genes in the human disease vector mosquito Aedes aegypti[J]. Scientific Reports, 2017, 7: 13223. |
[76] | MYSORE K, HAPAIRAI L K, SUN L H, et al. Yeast interfering RNA larvicides targeting neural genes induce high rates of Anopheles larval mortality[J]. Malaria Journal, 2017, 16(1): 461. |
[77] | MYSORE K, LI P, WANG C W, et al. Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes[J]. Parasites & Vectors, 2019, 12(1): 256. |
[78] | LEONARD S P, POWELL J E, PERUTKA J, et al. Engineered symbionts activate honey bee immunity and limit pathogens[J]. Science, 2020, 367(6477): 573-576. |
[79] | DALAKOURAS A, WASSENEGGER M, MCMILLAN J N, et al. Induction of silencing in plants by high-pressure spraying of in vitro-synthesized small RNAs[J]. Frontiers in Plant Science, 2016, 7: 1327. |
[80] | ZHU F, XU J J, PALLI R, et al. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata[J]. Pest Management Science, 2011, 67(2): 175-182. |
[81] | MAMTA B, RAJAM M V. RNAi technology: a new platform for crop pest control[J]. Physiology and Molecular Biology of Plants, 2017, 23(3): 487-501. |
[82] | DAVIS-VOGEL C, ORTIZ A, PROCYK L, et al. Knockdown of RNA interference pathway genes impacts the fitness of western corn rootworm[J]. Scientific Reports, 2018, 8: 7858. |
[83] | GHOSH S K B, HUNTER W B, PARK A L, et al. Double-stranded RNA oral delivery methods to induce RNA interference in phloem and plant-sap-feeding hemipteran insects[J]. Journal of Visualized Experiments: JoVE, 2018(135): 57390. |
[84] | CHRISTIAENS O, TARDAJOS M G, MARTINEZ REYNA Z L, et al. Increased RNAi efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers[J]. Frontiers in Physiology, 2018, 9: 316. |
[85] | THAIRU M W, SKIDMORE I H, BANSAL R, et al. Efficacy of RNA interference knockdown using aerosolized short interfering RNAs bound to nanoparticles in three diverse aphid species[J]. Insect Molecular Biology, 2017, 26(3): 356-368. |
[86] | CASTELLANOS N L, SMAGGHE G, SHARMA R, et al. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros[J]. Pest Management Science, 2019, 75(2): 537-548. |
[87] | HERNÁNDEZ-SOTO A, CHACÓN-CERDAS R. RNAi crop protection advances[J]. International Journal of Molecular Sciences, 2021, 22(22): 12148. |
[88] | MA Z Z, ZHENG Y, CHAO Z J, et al. Visualization of the process of a nanocarrier-mediated gene delivery: stabilization, endocytosis and endosomal escape of genes for intracellular spreading[J]. Journal of Nanobiotechnology, 2022, 20(1): 124. |
[89] | WHITFIELD R, ANASTASAKI A, TRUONG N P, et al. Efficient binding, protection, and self-release of dsRNA in soil by linear and star cationic polymers[J]. ACS Macro Letters, 2018, 7(8): 909-915. |
[90] | YAN S, REN B Y, SHEN J. Nanoparticle-mediated double-stranded RNA delivery system: a promising approach for sustainable pest management[J]. Insect Science, 2021, 28(1): 21-34. |
[91] | WANG Z H, LI M X, KONG Z Y, et al. Star polycation mediated dsRNA improves the efficiency of RNA interference in Phytoseiulus persimilis[J]. Nanomaterials, 2022, 12(21): 3809. |
[92] | MA Z Z, ZHANG Y H, LI M S, et al. A first greenhouse application of bacteria-expressed and nanocarrier-delivered RNA pesticide for Myzus persicae control[J]. Journal of Pest Science, 2023, 96(1): 181-193. |
[93] | MITTER N, WORRALL E A, ROBINSON K E, et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses[J]. Nature Plants, 2017, 3: 16207. |
[94] | JAIN R G, FLETCHER S J, MANZIE N, et al. Foliar application of clay-delivered RNA interference for whitefly control[J]. Nature Plants, 2022, 8(5): 535-548. |
[95] | KOSTOV K, ANDONOVA-LILOVA B, SMAGGHE G. Inhibitory activity of carbon quantum dots against Phytophthora infestans and fungal plant pathogens and their effect on dsRNA-induced gene silencing[J]. Biotechnology & Biotechnological Equipment, 2022, 36(1): 949-959. |
[96] | HU R P, SHI J, TIAN C, et al. Nucleic acid aptamers for pesticides, toxins, and biomarkers in agriculture[J]. ChemPlusChem, 2022, 87(11): e202200230. |
[97] | GU K X, SONG X S, XIAO X M, et al. A β2-tubulin dsRNA derived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance[J]. Pesticide Biochemistry and Physiology, 2019, 153: 36-46. |
[98] | BLUM S A E, LORENZ M G, WACKERNAGEL W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils[J]. Systematic and Applied Microbiology, 1997, 20(4): 513-521. |
[99] | LEVY-BOOTH D J, CAMPBELL R G, GULDEN R H, et al. Cycling of extracellular DNA in the soil environment[J]. Soil Biology and Biochemistry, 2007, 39(12): 2977-2991. |
[100] | DUBELMAN S, FISCHER J, ZAPATA F, et al. Environmental fate of double-stranded RNA in agricultural soils[J]. PLoS One, 2014, 9(3): e93155. |
[101] | ZOTTI M, DOS SANTOS E A, CAGLIARI D, et al. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes[J]. Pest Management Science, 2018, 74(6): 1239-1250. |
[102] | DEWITTE-ORR S J, MEHTA D R, COLLINS S E, et al. Long double-stranded RNA induces an antiviral response independent of IFN regulatory factor 3, IFN-beta promoter stimulator 1, and IFN[J]. Journal of Immunology, 2009, 183(10): 6545-6553. |
[103] | WHITEHEAD K A, DAHLMAN J E, LANGER R S, et al. Silencing or stimulation? siRNA delivery and the immune system[J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 77-96. |
[104] | FLETCHER S J, REEVES P T, HOANG B T, et al. A perspective on RNAi-based biopesticides[J]. Frontiers in Plant Science, 2020, 11: 51. |
[105] | KUNTE N, MCGRAW E, BELL S, et al. Prospects, challenges and current status of RNAi through insect feeding[J]. Pest Management Science, 2020, 76(1): 26-41. |
[106] | KINGSOLVER M B, HUANG Z J, HARDY R W. Insect antiviral innate immunity: pathways, effectors, and connections[J]. Journal of Molecular Biology, 2013, 425(24): 4921-4936. |
[107] | COOPER A M, SILVER K, ZHANG J Z, et al. Molecular mechanisms influencing efficiency of RNA interference in insects[J]. Pest Management Science, 2019, 75(1): 18-28. |
[108] | MAT JALALUDDIN N S, OTHMAN R Y, HARIKRISHNA J A. Global trends in research and commercialization of exogenous and endogenous RNAi technologies for crops[J]. Critical Reviews in Biotechnology, 2019, 39(1): 67-78. |
[109] | 关若冰, 李海超, 苗雪霞. RNA生物农药的商业化现状及存在问题[J]. 中国农业科学, 2022, 55(15): 2949-2960. |
GUAN R B, LI H C, MIAO X X. Commercialization status and existing problems of RNA biopesticides[J]. Scientia Agricultura Sinica, 2022, 55(15): 2949-2960. (in Chinese with English abstract) | |
[110] | RODRIGUES T B, MISHRA S K, SRIDHARAN K, et al. First sprayable double-stranded RNA-based biopesticide product targets proteasome subunit beta type-5 in Colorado potato beetle (Leptinotarsa decemlineata)[J]. Frontiers in Plant Science, 2021, 12: 728652. |
[111] | LIU S S, JAOUANNET M, DEMPSEY D A, et al. RNA-based technologies for insect control in plant production[J]. Biotechnology Advances, 2020, 39: 107463. |
[112] | SZÉKÁCS A, AMMOUR A S, MENDELSOHN M L. Editorial: RNAi based pesticides[J]. Frontiers in Plant Science, 2021, 12: 714116. |
[113] | NAITO Y, YAMADA T, MATSUMIYA T, et al. dsCheck: highly sensitive off-target search software for double-stranded RNA-mediated RNA interference[J]. Nucleic Acids Research, 2005, 33(suppl_2): W589-W591. |
[1] | 陈乐然, 郑建波, 贾永义, 迟美丽, 李飞, 程顺, 刘士力, 刘一诺, 蒋文枰, 顾志敏. 红螯螯虾CHH2基因的表达特征及其在卵巢发育中的功能[J]. 浙江农业学报, 2023, 35(1): 33-40. |
[2] | 和琼姬;燕飞;陈剑平;* . RNA干扰机制及其主要蛋白因子研究进展[J]. , 2011, 23(2): 0-420. |
[3] | 杨科府;陈 瑜;王慧中;应奇才;施农农*. RNA沉默机制及其介导的植物抗病毒基因工程研究进展 [J]. , 2009, 21(6): 0-659. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||