浙江农业学报 ›› 2024, Vol. 36 ›› Issue (4): 952-967.DOI: 10.3969/j.issn.1004-1524.20230621
汤永华1(), 石非凡1,*(
), 林森2, 张志鹏1, 孟妍君1, 刘兴通1
收稿日期:
2023-05-12
出版日期:
2024-04-25
发布日期:
2024-04-29
作者简介:
汤永华(1980—),男,山东寿光人,博士,讲师,主要从事深度学习、图像处理、数字系统研究。E-mail:tangyonghua@sut.edu.cn
通讯作者:
*石非凡,E-mail:2328930037@qq.com
基金资助:
TANG Yonghua1(), SHI Feifan1,*(
), LIN Sen2, ZHANG Zhipeng1, MENG Yanjun1, LIU Xingtong1
Received:
2023-05-12
Online:
2024-04-25
Published:
2024-04-29
Contact:
SHI Feifan
摘要:
针对现有方法在高密度锦鲤鱼苗目标检测任务中适用性差的问题,提出一种基于非局部操作的YOLOv5s(MS-Non-local BIFPN coordinate attention YOLOv5s,NBC-YOLOv5s)目标检测算法。首先,在YOLOv5s的主干网络中,添加多尺度非局部操作算子(multi scale non-local, MS-Non-local),增强模型对高密度锦鲤鱼苗的特征提取能力;其次,在颈部网络使用双向加权特征金字塔结构(bi-directional feature pyramid network, BIFPN)提升模型特征融合效率;最后,在网络的特征融合处,引入坐标注意力机制(coordinate attention, CA),增加模型对图片关键信息的关注度。为验证本文算法的有效性,结合真实渔场环境建立锦鲤鱼苗数据集。实验结果表明,NBC-YOLOv5s的精确率、召回率、平均精度均值(mAP)分别为88.5%、89.7%、93.7%,与YOLOv5s相比,改进后网络较原模型分别提升0.6、9.0、4.4百分点。为验证MS-Non-local对YOLOv5s的性能提升效果,本文对比了卷积注意力(convolutional block attention module, CBAM)、通道注意力(squeeze and excitation, SE)、双层路由注意力(bi-level routing attention, BRA)3种机制。结果表明,MS-Non-local的mAP相较于CBAM、SE、BRA分别提升了2.6、2.1、0.9百分点。并且通过模型拆解,分析了本文方法对不同密度锦鲤鱼苗图像的检测有效性,结果显示,该算法可实现真实场景下对高密度锦鲤鱼苗的检测,能够为筛选高品质锦鲤提供有效技术支撑。
中图分类号:
汤永华, 石非凡, 林森, 张志鹏, 孟妍君, 刘兴通. 基于融合非局部操作的YOLOv5s高密度锦鲤鱼苗检测方法[J]. 浙江农业学报, 2024, 36(4): 952-967.
TANG Yonghua, SHI Feifan, LIN Sen, ZHANG Zhipeng, MENG Yanjun, LIU Xingtong. YOLOv5s high-density koi fry detection method based on fusion non-local operation[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 952-967.
图1 YOLOv5s网络结构 CONV,卷积层;BN,批量归一化层;CSP,跨阶段局部网络;SPPF,快速空间金字塔池化。下同。
Fig.1 YOLOv5s network structure CONV, Convolution; BN, Batch normalization; CSP, Cross stage partial; SPPF, Spatial pyramid pooling-fast. The same as below.
图2 NBC-YOLOv5s网络结构 SPP,空间金字塔池化;MS-NL,多尺度非局部操作算子;UP,上采样模块。
Fig.2 NBC-YOLOv5s network structure SPP, Spatial Pyramid Pooling; MS-NL, MS-Non-local; UP, Upsample.
图3 Non-local模块结构 T,批量输入图片数量;H,图像高度;W,图像宽度;C,图像通道数;X,输入特征图;Z,输出特征图。
Fig.3 Non-local module structure T, Batch size; H, Image height; W, Image width; C, Number of image channels; X, Input feature map; Z, Output feature map.
图4 Non-local Demo模块结构 θ、ϕ、g为3种卷积核;A,注意力图;M1,输出特征图;M,输入特征图。
Fig.4 Non-local Demo module structure θ, ϕ and g were three convolution kernels; A, Attention map; M1, Output feature map; M, Input feature map.
图5 MS-Non-local 模块结构 F,输入特征图;F1,输出特征图;θ、ϕ、g为3种卷积核。
Fig.5 MS-Non-local module structure F, Input feature map; F1, Output feature map; θ, ϕ and g were three convolution kernels.
图6 FPN、PAN、BIFPN结构 P,层数;in,输入;out,输出;td,中间层。
Fig.6 FPN、PAN、BIFPN structure P, Feature levels used for the final prediction; in, Input; out, Output; td, Intermediate layer.
图11 数据集分析 A,锦鲤鱼苗类型分布;B,目标中心点分布;C,锦鲤鱼苗大小分布。
Fig.11 Dataset analysis A, Distribution of types of koi fry; B, Distribution of target center points; C, Size distribution of koi fry.
方法 Method | 精确率 Precision/% | 召回率 Recall/% | 平均精度均值 mAP/% | 占用内存 Memory/Mb | 检测速度 Speed/ms |
---|---|---|---|---|---|
YOLOv5s+CBAM | 86.3 | 85.1 | 89.5 | 28.2 | 35.1 |
YOLOv5s+SE | 88.0 | 86.2 | 90.0 | 23.5 | 36.0 |
YOLOv5s+BRA | 87.8 | 86.8 | 91.2 | 181.0 | 41.1 |
YOLOv5s+MS-Nonlocal | 88.2 | 87.1 | 92.1 | 167.0 | 40.2 |
表1 不同注意力机制性能比较
Table 1 Performance comparison of different attention mechanisms
方法 Method | 精确率 Precision/% | 召回率 Recall/% | 平均精度均值 mAP/% | 占用内存 Memory/Mb | 检测速度 Speed/ms |
---|---|---|---|---|---|
YOLOv5s+CBAM | 86.3 | 85.1 | 89.5 | 28.2 | 35.1 |
YOLOv5s+SE | 88.0 | 86.2 | 90.0 | 23.5 | 36.0 |
YOLOv5s+BRA | 87.8 | 86.8 | 91.2 | 181.0 | 41.1 |
YOLOv5s+MS-Nonlocal | 88.2 | 87.1 | 92.1 | 167.0 | 40.2 |
方法 Method | 精确率 Precision/% | 召回率 Recall/% | 平均精度均值 mAP/% | 占用内存 Memory/Mb | 检测速度 Speed/ms |
---|---|---|---|---|---|
SSD | 68.3 | 68.2 | 76.3 | 189 | 98 |
Faster Rcnn | 65.1 | 60.0 | 58.1 | 186 | 191 |
YOLOv4 | 86.5 | 78.5 | 81.5 | 246 | 41 |
YOLOv5s | 87.9 | 80.7 | 89.3 | 18 | 25 |
NBC-YOLOv5s | 88.5 | 89.7 | 93.7 | 213 | 35 |
表2 不同算法性能比较
Table 2 Comparison of the performance of different algorithms
方法 Method | 精确率 Precision/% | 召回率 Recall/% | 平均精度均值 mAP/% | 占用内存 Memory/Mb | 检测速度 Speed/ms |
---|---|---|---|---|---|
SSD | 68.3 | 68.2 | 76.3 | 189 | 98 |
Faster Rcnn | 65.1 | 60.0 | 58.1 | 186 | 191 |
YOLOv4 | 86.5 | 78.5 | 81.5 | 246 | 41 |
YOLOv5s | 87.9 | 80.7 | 89.3 | 18 | 25 |
NBC-YOLOv5s | 88.5 | 89.7 | 93.7 | 213 | 35 |
方法 Method | 精确率 Precision/% | 召回率 Recall/% | 平均精度均值 mAP/% | 占用内存 Memory/Mb | 检测速度 Speed/ms |
---|---|---|---|---|---|
YOLOv6s | 95.5 | 87.0 | 93.60 | 40 | 28 |
YOLOv7 | 82.1 | 90.2 | 93.06 | 298 | 13 |
NBC-YOLOv5s | 88.5 | 89.7 | 93.70 | 213 | 35 |
表3 前沿算法性能比较
Table 3 Comparison of leading-edge algorithm performance
方法 Method | 精确率 Precision/% | 召回率 Recall/% | 平均精度均值 mAP/% | 占用内存 Memory/Mb | 检测速度 Speed/ms |
---|---|---|---|---|---|
YOLOv6s | 95.5 | 87.0 | 93.60 | 40 | 28 |
YOLOv7 | 82.1 | 90.2 | 93.06 | 298 | 13 |
NBC-YOLOv5s | 88.5 | 89.7 | 93.70 | 213 | 35 |
方法 Method | 添加CA注意力 Add CA | 修改特征金字塔 Modify BIFPN | 添加MS-Non-local Add MS-Non-local | 平均精度均值 mAP/% | 检测速度 Speed/ms |
---|---|---|---|---|---|
YOLOv5s | × | × | × | 89.3 | 25 |
1 | √ | × | × | 90.1 | 26 |
2 | × | √ | × | 89.7 | 26 |
3 | × | × | √ | 92.1 | 40 |
4 | √ | × | √ | 91.3 | 32 |
5 | √ | √ | × | 91.0 | 27 |
6 | × | √ | √ | 92.3 | 33 |
NBC-YOLOv5s | √ | √ | √ | 93.7 | 35 |
表4 消融实验结果
Table 4 Results of ablation experiment
方法 Method | 添加CA注意力 Add CA | 修改特征金字塔 Modify BIFPN | 添加MS-Non-local Add MS-Non-local | 平均精度均值 mAP/% | 检测速度 Speed/ms |
---|---|---|---|---|---|
YOLOv5s | × | × | × | 89.3 | 25 |
1 | √ | × | × | 90.1 | 26 |
2 | × | √ | × | 89.7 | 26 |
3 | × | × | √ | 92.1 | 40 |
4 | √ | × | √ | 91.3 | 32 |
5 | √ | √ | × | 91.0 | 27 |
6 | × | √ | √ | 92.3 | 33 |
NBC-YOLOv5s | √ | √ | √ | 93.7 | 35 |
方法 Method | 精确率 Precision | 召回率 Recall | 平均精度均值 mAP |
---|---|---|---|
YOLOv5s | 84.8 | 77.9 | 84.6 |
1 | 83.4 | 85.7 | 89.4 |
2 | 87.2 | 86.1 | 90.7 |
3 | 85.7 | 86.3 | 90.8 |
4 | 88.1 | 85.1 | 90.3 |
5 | 90.2 | 85.8 | 91.7 |
6 | 89.4 | 84.6 | 91.2 |
NBC-YOLOv5s | 90.9 | 87.6 | 92.2 |
表5 改进模型在高密度锦鲤鱼苗情况下的性能对比
Table 5 Performance comparison of improved models in high-density koi fry %
方法 Method | 精确率 Precision | 召回率 Recall | 平均精度均值 mAP |
---|---|---|---|
YOLOv5s | 84.8 | 77.9 | 84.6 |
1 | 83.4 | 85.7 | 89.4 |
2 | 87.2 | 86.1 | 90.7 |
3 | 85.7 | 86.3 | 90.8 |
4 | 88.1 | 85.1 | 90.3 |
5 | 90.2 | 85.8 | 91.7 |
6 | 89.4 | 84.6 | 91.2 |
NBC-YOLOv5s | 90.9 | 87.6 | 92.2 |
[1] | 陈俊杰, 李媛瑗, 阳瑞雪, 等. 四川地区一株锦鲤疱疹病毒的分离鉴定及系统进化分析[J]. 水产学报, 2018, 42(1): 141-148. |
CHEN J J, LI Y Y, YANG R X, et al. Isolation and identification of a koi herpesvirus and phylogenetic analysis from Sichuan Province[J]. Journal of Fisheries of China, 2018, 42(1): 141-148. (in Chinese with English abstract) | |
[2] | 康慧敏, 何嘉乐, 刘晨恺, 等. 四川地区养殖锦鲤浮肿病毒检测与系统进化分析[J]. 浙江农业学报, 2019, 31(4): 539-544. |
KANG H M, HE J L, LIU C K, et al. Detection and phylogenetic analysis of carp edema virus (CEV) in farmed koi carp in Sichuan Province[J]. Acta Agriculturae Zhejiangensis, 2019, 31(4): 539-544. (in Chinese with English abstract) | |
[3] | 杨志强, 李潇轩, 殷悦, 等. 锦鲤苗种筛选技术及成鱼鉴赏标准[J]. 水产养殖, 2022, 43(9): 49-50. |
YANG Z Q, LI X X, YIN Y, et al. Screening technology of fry and appreciation standard of adult fish in koi fish[J]. Journal of Aquaculture, 2022, 43(9): 49-50. (in Chinese) | |
[4] | GRAY P C, FLEISHMAN A B, KLEIN D J, et al. A convolutional neural network for detecting sea turtles in drone imagery[J]. Methods in Ecology and Evolution, 2019, 10(3): 345-355. |
[5] | 陈明, 张重阳, 冯国富, 等. 基于特征加权融合的鱼类摄食活动强度评估方法[J]. 农业机械学报, 2020, 51(2): 245-253. |
CHEN M, ZHANG C Y, FENG G F, et al. Intensity assessment method of fish feeding activities based on feature weighted fusion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 245-253. (in Chinese with English abstract) | |
[6] | 张明华, 龙腾, 宋巍, 等. 一种水下鱼类动态视觉序列运动目标检测方法[J]. 图学学报, 2021, 42(1): 52-58. |
ZHANG M H, LONG T, SONG W, et al. Method for moving object detection of underwater fish using dynamic video sequence[J]. Journal of Graphics, 2021, 42(1): 52-58. (in Chinese with English abstract) | |
[7] | TANAKA Y, YAMABE S, FUKAE K, et al. Quantification of fish behavior using optical flow[C]//2022 IEEE 11th Global Conference on Consumer Electronics. October 18-21, 2022.: Osaka, Japan. IEEE, 2022: 125-126. |
[8] | SALMAN A, MAQBOOL S, KHAN A H, et al. Real-time fish detection in complex backgrounds using probabilistic background modelling[J]. Ecological Informatics, 2019, 51: 44-51. |
[9] | THARWAT A, HEMEDAN A A, HASSANIEN A E, et al. A biometric-based model for fish species classification[J]. Fisheries Research, 2018, 204: 324-336. |
[10] | 樊闯, 赵子皓, 张雪松, 等. 基于BP神经网络的一季稻发育期预测模型[J]. 浙江农业学报, 2023, 35(2): 434-444. |
FAN C, ZHAO Z H, ZHANG X S, et al. Prediction model of one season rice development period based on BP neural network[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 434-444. (in Chinese) | |
[11] | 李斌, 刘东阳, 时国龙, 等. 基于改进YOLOv4模型的群养生猪姿态检测[J]. 浙江农业学报, 2023, 35(1): 215-225. |
LI B, LIU D Y, SHI G L, et al. Pig posture detection based on improved YOLOv4 model[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 215-225. (in Chinese with English abstract) | |
[12] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV, USA.: IEEE, 2016: 770-778. |
[13] | 刘雨青, 王亚茹, 黄璐瑶. 基于FML-Centernet算法的鱼类识别检测[J]. 激光与光电子学进展, 2022, 59(16): 1615002. |
LIU Y Q, WANG Y R, HUANG L Y. Fish recognition and detection based on FML-centernet algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1615002. (in Chinese with English abstract) | |
[14] | 吴立栋, 彭宗举, 李欣, 等. 基于样本迭代融合的海洋生物检测[J]. 激光与光电子学进展, 2023, 60(2): 3788/LOP212567. |
WU L D, PENG Z J, LI X, et al. Marine creature detection based on sample iterative fusion[J]. Laser & Optoelectronics Progress, 2023, 60(2): 3788/LOP212567. (in Chinese with English abstract) | |
[15] | 杨文静, 陈明, 冯国富. 基于图像增强的水下视频鱼类识别方法[J]. 激光与光电子学进展, 2021, 58(22): 2211002. |
YANG W J, CHEN M, FENG G F. Fish recognition method for underwater video based on image enhancement[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2211002. (in Chinese with English abstract) | |
[16] | SALMAN A, AHMAD SIDDIQUI S, SHAFAIT F, et al. Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system[J]. ICES Journal of Marine Science, 2020, 77(4): 1295-1307. |
[17] | ZHAO Z X, LIU Y, SUN X D, et al. Composited FishNet: fish detection and species recognition from low-quality underwater videos[J]. IEEE Transactions on Image Processing, 2021, 30: 4719-4734. |
[18] | FAROOQ M, HAFEEZ A. Covid-resnet: a deep learning framework for screening of covid19 from radiographs[EB/OL]. (2020-05-31) [2023-05-10].https://arxiv.org/abs/2003.14395. |
[19] | WU W X, QI Z A, LI F X. PointConv: deep convolutional networks on 3D point clouds[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 15-20, 2019. Long Beach, CA, USA. IEEE, 2019: 9621-9630. |
[20] | ALBAHLI S, NAWAZ M, JAVED A, et al. An improved faster-RCNN model for handwritten character recognition[J]. Arabian Journal for Science and Engineering, 2021, 46(9): 8509-8523. |
[21] | KASPER-EULAERS M, HAHN N, BERGER S, et al. Short communication: detecting heavy goods vehicles in rest areas in winter conditions using YOLOv5[J]. Algorithms, 2021, 14(4): 114. |
[22] | WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. June 14-19, 2020. Seattle, WA, USA. IEEE, 2020: 390-391. |
[23] | WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT, USA. IEEE, 2018: 7794-7803. |
[24] | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. July 21-26, 2017. Honolulu, HI. IEEE, 2017: 2117-2125. |
[25] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 8759-8768. |
[26] | TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 13-19, 2020. Seattle, WA, USA. IEEE, 2020: 10781-10790. |
[27] | SINHA D, EL-SHARKAWY M. Thin MobileNet: an enhanced MobileNet architecture[C]//2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference. October 10-12, 2019. New York City, NY, USA. IEEE, 2019: 0280-0285. |
[28] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 20-25, 2021. Nashville, TN, USA. IEEE, 2021: 13713-13722. |
[29] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 7132-7141. |
[30] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
[31] | ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with Bi-level routing attention[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 17-24, 2023. Vancouver, BC, Canada. IEEE, 2023: 10323-10333. |
[32] | LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. ( 2022-09-27[2023-05-10].https://arxiv.org/abs/2209.02976. |
[33] | WANG C Y A. BOCHKOVSKIY A, H Y M LIAO. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, IEEE, 2023: 7464-7475. |
[34] | DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 20-25, 2021. Nashville, TN, USA. IEEE, 2021: 13733-13742. |
[1] | 杨新宇, 冯全, 张建华, 杨森. 基于对比学习的植物叶片病害识别[J]. 浙江农业学报, 2024, 36(1): 215-224. |
[2] | 刘媛媛, 王定坤, 邬雷, 黄德昌, 朱路. 基于知识蒸馏和模型剪枝的轻量化模型植物病害识别[J]. 浙江农业学报, 2023, 35(9): 2250-2264. |
[3] | 张䶮, 周保平, 王昱, 冯洁, 叶凡恺, 何云龙. 基于迁移学习和改进残差网络的棉花叶螨为害等级识别[J]. 浙江农业学报, 2023, 35(7): 1729-1739. |
[4] | 李斌, 刘东阳, 时国龙, 慕京生, 徐浩然, 辜丽川, 焦俊. 基于改进YOLOv4模型的群养生猪姿态检测[J]. 浙江农业学报, 2023, 35(1): 215-225. |
[5] | 闫宁, 张晗, 董宏图, 康凯, 罗斌. 基于透射光和反射光图像同位分割的小麦品种识别方法研究[J]. 浙江农业学报, 2022, 34(3): 590-598. |
[6] | 林孝腾, 孙茜, 郑书河. 基于OpenCV的低能耗植物工厂照明系统设计与试验[J]. 浙江农业学报, 2022, 34(3): 626-635. |
[7] | 肖志云, 王伊凝. 基于RF-VR的紫丁香叶片叶绿素含量高光谱反演[J]. 浙江农业学报, 2021, 33(11): 2164-2173. |
[8] | 钟伟镇, 刘鑫磊, 杨坤龙, 李丰果. 基于Mask-RCNN的复杂背景下多目标叶片的分割和识别[J]. 浙江农业学报, 2020, 32(11): 2059-2066. |
[9] | 闫建伟, 苏小东, 赵源, 刘进平. 基于图像特征的小麦胚芽鞘识别[J]. 浙江农业学报, 2019, 31(2): 326-332. |
[10] | 张满囤, 单新媛, 于洋, 米娜, 阎刚, 郭迎春. 基于小波变换和改进KPCA的奶牛个体识别研究[J]. 浙江农业学报, 2017, 29(12): 2000-2008. |
[11] | 毕立恒. 基于叶片图像算法的植物种类识别方法研究[J]. 浙江农业学报, 2017, 29(12): 2142-2148. |
[12] | 张善文, 黄文准, 尤著宏. 基于物联网和深度卷积神经网络的冬枣病害识别方法[J]. 浙江农业学报, 2017, 29(11): 1868-1874. |
[13] | 李颀, 胡艺聪, 武付闯. 基于图像处理的育苗箱环境控制系统[J]. 浙江农业学报, 2017, 29(11): 1912-1919. |
[14] | 夏永泉, 王兵, 支俊, 黄海鹏, 孙静茹. 基于EM和K-means混合聚类方法的植物叶片病害区域自动提取[J]. 浙江农业学报, 2017, 29(8): 1384-1391. |
[15] | 吴庆岗, 张卫国, 常化文, 金保华, 刘朝霞. 基于梯度Hough变换的遮挡苹果目标定位[J]. 浙江农业学报, 2017, 29(6): 1009-1016. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||