[1] |
Food and Agriculture Orgsnization. Crops and livestock products[DB/OL].[2023-03-15]. https://www.fao.org/faostat/zh/#data/QCL.
|
[2] |
罗其友, 高明杰, 张烁, 等. 中国马铃薯产业国际比较分析[J]. 中国农业资源与区划, 2021, 42(7): 1-8.
|
|
LUO Q Y, GAO M J, ZHANG S, et al. Comparative analysis on potato industry between China and other countries[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(7): 1-8. (in Chinese)
|
[3] |
沈辰, 孙家波, 吴建寨, 等. 世界马铃薯生产、消费与贸易格局及演化分析[J]. 山东农业科学, 2021, 53(2): 127-132.
|
|
SHEN C, SUN J B, WU J Z, et al. Analysis on pattern and evolution of world potato production, consumption and trade[J]. Shandong Agricultural Sciences, 2021, 53(2): 127-132. (in Chinese)
|
[4] |
杨雅伦, 郭燕枝, 孙君茂. 我国马铃薯产业发展现状及未来展望[J]. 中国农业科技导报, 2017, 19(1): 29-36.
|
|
YANG Y L, GUO Y Z, SUN J M. Present status and future prospect for potato industry in China[J]. Journal of Agricultural Science and Technology, 2017, 19(1): 29-36. (in Chinese with English abstract)
|
[5] |
王金华, 秦礼康, 叶春. 乌洋芋主要营养成分分析与评价[J]. 食品与机械, 2007, 23(6): 79-82.
|
|
WANG J H, QIN L K, YE C. Main nutrition ingredients analysis and evaluation of purple potato[J]. Food & Machinery, 2007, 23(6): 79-82. (in Chinese with English abstract)
|
[6] |
张玉胜, 刘洋, 高明杰, 等. 中国马铃薯产品国际竞争力比较分析[J]. 农业展望, 2020, 16(9): 101-106.
|
|
ZHANG Y S, LIU Y, GAO M J, et al. Comparative analysis on international competitiveness of China’s potato products[J]. Agricultural Outlook, 2020, 16(9): 101-106. (in Chinese)
|
[7] |
GIOVENZANA V, CIVELLI R, BEGHI R, et al. Testing of a simplified LED based vis/NIR system for rapid ripeness evaluation of white grape (Vitis vinifera L.) for Franciacorta wine[J]. Talanta, 2015, 144: 584-591.
|
[8] |
SINGH H, SRIDHAR A, SAINI S S. Ultra-low-cost self-referencing multispectral detector for non-destructive measurement of fruit quality[J]. Food Analytical Methods, 2020, 13(10): 1879-1893.
|
[9] |
王凡, 李永玉, 彭彦昆, 等. 便携式番茄多品质参数可见/近红外检测装置研发[J]. 农业工程学报, 2017, 33(19): 295-300.
|
|
WANG F, LI Y Y, PENG Y K, et al. Development of portable device for simultaneous detection on multi-quality attributes of tomato by visible and near-infrared[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 295-300. (in Chinese with English abstract)
|
[10] |
李伟强. 便携式猕猴桃糖度无损检测仪的研发[D]. 杨凌: 西北农林科技大学, 2017.
|
|
LI W Q. Development on nondestructive sugar content detector for kiwi fruits[D]. Yangling: Northwest A & F University, 2017. (in Chinese with English abstract)
|
[11] |
刘燕德, 朱丹宁, 孙旭东, 等. 苹果可溶性固形物便携式检测实验研究[J]. 光谱学与光谱分析, 2017, 37(10): 3260.
|
|
LIU Y D, ZHU D N, SUN X D, et al. Study on detecting soluble solids in fruits based on portable near infrared spectrometer[J]. Spectroscopy and Spectral Analysis, 2017, 37(10): 3260. (in Chinese with English abstract)
|
[12] |
王凡, 李永玉, 彭彦昆, 等. 便携式马铃薯多品质参数局部透射光谱无损检测装置[J]. 农业机械学报, 2018, 49(7): 348-354.
|
|
WANG F, LI Y Y, PENG Y K, et al. Hand-held device for non-destructive detection of potato quality parameters[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 348-354. (in Chinese with English abstract)
|
[13] |
王凡. 番茄和马铃薯品质光学无损检测技术及装备研发[D]. 北京: 中国农业大学, 2019.
|
|
WANG F. Research and development of optical non-destructive testing technology and equipment for tomato and potato quality[D]. Beijing: China Agricultural University, 2019. (in Chinese with English abstract)
|
[14] |
何平. 便携式产品设计分析[J]. 数位时尚(新视觉艺术), 2010(5): 63-64.
|
|
HE P. Portable product design analysis[J]. Digital Fashion, 2010(5): 63-64. (in Chinese)
|
[15] |
GALVÃO R K H, ARAUJO M C U, JOSÉ G E, et al. A method for calibration and validation subset partitioning[J]. Talanta, 2005, 67(4): 736-740.
|
[16] |
褚小立, 袁洪福, 陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展, 2004, 16(4): 528-542.
|
|
CHU X L, YUAN H F, LU W Z. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique[J]. Progress in Chemistry, 2004, 16(4): 528-542. (in Chinese)
|
[17] |
王凡, 李永玉, 彭彦昆, 等. 基于可见/近红外透射光谱的番茄红素含量无损检测方法研究[J]. 分析化学, 2018, 46(9): 1424-1431.
|
|
WANG F, LI Y Y, PENG Y K, et al. Nondestructive determination of lycopene content based on visible/near infrared transmission spectrum[J]. Chinese Journal of Analytical Chemistry, 2018, 46(9): 1424-1431. (in Chinese)
|
[18] |
杜晨朝, 赵安邦, 吴志生, 等. 近红外光谱结合不同变量筛选方法用于金银花提取过程中绿原酸量的在线监测[J]. 中草药, 2017, 48(16): 3317-3321.
|
|
DU C C, ZHAO A B, WU Z S, et al. Online control of chlorogenic acid in Lonicerae Japonicae Flos by near infrared spectroscopy combined with different variable selections[J]. Chinese Traditional and Herbal Drugs, 2017, 48(16): 3317-3321. (in Chinese)
|
[19] |
WU D, SUN D W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review: Part II: applications[J]. Innovative Food Science & Emerging Technologies, 2013, 19: 15-28.
|