浙江农业学报 ›› 2025, Vol. 37 ›› Issue (8): 1615-1623.DOI: 10.3969/j.issn.1004-1524.20240718
收稿日期:
2024-08-06
出版日期:
2025-08-25
发布日期:
2025-09-03
作者简介:
刘国敏(1989—),女,山东曹县人,硕士,助理研究员,主要从事薯类栽培与育种研究工作。E-mail:1158593947@qq.com
通讯作者:
*覃维治,E-mail:664725866@qq.com
基金资助:
LIU Guomin(), ZHENG Xu, LIAO Yujiao, QIN Yexin, QIN Weizhi(
)
Received:
2024-08-06
Online:
2025-08-25
Published:
2025-09-03
Contact:
QIN Weizhi
摘要: 为探究嫁接对低温胁迫下不同马铃薯材料的影响,以抗寒品种桂农薯1号(G1)和不抗寒品种陇薯9号(L9)作为试验材料,进行砧穗互接,得到L9G1、G1L9两个嫁接组合,将G1、G1L9、L9G1、L9置于光照培养箱中进行4、0 ℃低温处理,以25 ℃为对照,测定马铃薯叶片抗氧化酶活性、膜脂过氧化指标、渗透调节物质含量。对抗寒相关指标进行抗寒系数计算,并利用抗寒系数进行相关性分析、主成分分析(PCA)、隶属函数值和权重法分析,综合评价马铃薯材料的抗寒性。结果表明:可溶性糖(SS)含量与过氧化氢酶(CAT)活性的抗寒性系数呈显著(p<0.05)正相关,相对电导率(REC)与超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量的抗寒性系数呈显著负相关。通过主成分分析将9个单一指标转化为2个综合指标,SOD活性、MDA含量、可溶性蛋白(SP)含量、REC和CAT活性可以作为衡量马铃薯材料抗寒性的指标。通过计算综合抗寒能力,发现4个马铃薯材料抗寒性排序依次为G1>L9G1>G1L9>L9。综合分析认为,抗寒性强的马铃薯品种无论是作为砧木还是作为接穗,均可以提高嫁接组合的抗寒性,并且作砧木时对嫁接组合抗寒性的影响较大。
中图分类号:
刘国敏, 郑虚, 廖玉娇, 覃叶欣, 覃维治. 嫁接对低温胁迫下马铃薯苗抗寒性的影响[J]. 浙江农业学报, 2025, 37(8): 1615-1623.
LIU Guomin, ZHENG Xu, LIAO Yujiao, QIN Yexin, QIN Weizhi. Effect of grafting on cold resistance of potato seedlings under low temperature stress[J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1615-1623.
材料 Material | 处理温度 Treatment temperature/℃ | MDA/ (nmol·g-1) | Pro/ (μg·g-1) | SS/ (mg·g-1) | SP/ (mg·g-1) | H2O2/ (μmol·g-1) | REC/% |
---|---|---|---|---|---|---|---|
L9 | 25 | 23.12 c | 66.91 b | 8.53 c | 4.11 b | 0.93 b | 68.92 a |
4 | 36.86 b | 150.27 a | 26.17 a | 4.69 a | 1.37 a | 60.38 a | |
0 | 46.97 a | 148.50 a | 9.95 b | 4.22 b | 1.52 a | 61.19 a | |
G1 | 25 | 12.49 b | 46.22 c | 4.20 b | 3.47 b | 1.02 b | 72.82 b |
4 | 23.54 a | 89.56 b | 12.34 a | 4.14 a | 1.22 a | 60.73 c | |
0 | 24.27 a | 115.42 a | 12.59 a | 2.87 c | 0.99 b | 82.62 a | |
G1L9 | 25 | 21.17 a | 52.43 c | 6.75 c | 2.40 c | 1.09 b | 40.92 c |
4 | 24.24 a | 187.67 a | 15.46 a | 4.32 a | 1.26 a | 58.22 b | |
0 | 24.88 a | 121.19 b | 12.46 b | 3.83 b | 0.97 b | 87.48 a | |
L9G1 | 25 | 22.03 c | 56.05 c | 8.91 c | 2.70 b | 2.52 a | 67.00 a |
4 | 39.72 b | 161.27 b | 19.33 a | 3.10 a | 1.58 b | 59.24 a | |
0 | 49.90 a | 207.43 a | 16.60 b | 3.19 a | 1.14 c | 63.94 a |
表1 低温胁迫对马铃薯丙二醛含量、相对电导率和渗透调节物质含量的影响
Table 1 Effect of low temperature stress on malondialdehyde content, relative electrical conductivity and osmotic regulation substances content of potato
材料 Material | 处理温度 Treatment temperature/℃ | MDA/ (nmol·g-1) | Pro/ (μg·g-1) | SS/ (mg·g-1) | SP/ (mg·g-1) | H2O2/ (μmol·g-1) | REC/% |
---|---|---|---|---|---|---|---|
L9 | 25 | 23.12 c | 66.91 b | 8.53 c | 4.11 b | 0.93 b | 68.92 a |
4 | 36.86 b | 150.27 a | 26.17 a | 4.69 a | 1.37 a | 60.38 a | |
0 | 46.97 a | 148.50 a | 9.95 b | 4.22 b | 1.52 a | 61.19 a | |
G1 | 25 | 12.49 b | 46.22 c | 4.20 b | 3.47 b | 1.02 b | 72.82 b |
4 | 23.54 a | 89.56 b | 12.34 a | 4.14 a | 1.22 a | 60.73 c | |
0 | 24.27 a | 115.42 a | 12.59 a | 2.87 c | 0.99 b | 82.62 a | |
G1L9 | 25 | 21.17 a | 52.43 c | 6.75 c | 2.40 c | 1.09 b | 40.92 c |
4 | 24.24 a | 187.67 a | 15.46 a | 4.32 a | 1.26 a | 58.22 b | |
0 | 24.88 a | 121.19 b | 12.46 b | 3.83 b | 0.97 b | 87.48 a | |
L9G1 | 25 | 22.03 c | 56.05 c | 8.91 c | 2.70 b | 2.52 a | 67.00 a |
4 | 39.72 b | 161.27 b | 19.33 a | 3.10 a | 1.58 b | 59.24 a | |
0 | 49.90 a | 207.43 a | 16.60 b | 3.19 a | 1.14 c | 63.94 a |
材料 Material | 处理温度 Treatment temperature/℃ | SOD/ (U·g-1) | CAT/ (μmoL· min-1·g-1) | POD/ (μmoL· min-1·g-1) |
---|---|---|---|---|
L9 | 25 | 1 161.20 c | 733.54 a | 2 255.14 a |
4 | 2 519.28 a | 739.69 a | 1 968.43 b | |
0 | 1 958.00 b | 270.90 b | 2 226.63 a | |
G1 | 25 | 1 055.04 b | 184.74 c | 734.48 c |
4 | 1 668.84 a | 680.60 a | 1 273.08 b | |
0 | 1 750.65 a | 298.52 b | 1 852.94 a | |
G1L9 | 25 | 1 424.74 a | 240.76 c | 684.82 b |
4 | 1 349.38 a | 349.45 a | 463.14 c | |
0 | 1 238.98 a | 272.51 b | 934.69 a | |
L9G1 | 25 | 1 215.97 c | 229.82 b | 696.45 c |
4 | 1 758.16 b | 264.91 a | 2 462.18 a | |
0 | 1 977.45 a | 229.36 b | 1 564.87 b |
表2 低温胁迫对马铃薯叶片抗氧化酶活性的影响
Table 2 Effect of low temperature stress on antioxidant enzyme activities of potato leaves
材料 Material | 处理温度 Treatment temperature/℃ | SOD/ (U·g-1) | CAT/ (μmoL· min-1·g-1) | POD/ (μmoL· min-1·g-1) |
---|---|---|---|---|
L9 | 25 | 1 161.20 c | 733.54 a | 2 255.14 a |
4 | 2 519.28 a | 739.69 a | 1 968.43 b | |
0 | 1 958.00 b | 270.90 b | 2 226.63 a | |
G1 | 25 | 1 055.04 b | 184.74 c | 734.48 c |
4 | 1 668.84 a | 680.60 a | 1 273.08 b | |
0 | 1 750.65 a | 298.52 b | 1 852.94 a | |
G1L9 | 25 | 1 424.74 a | 240.76 c | 684.82 b |
4 | 1 349.38 a | 349.45 a | 463.14 c | |
0 | 1 238.98 a | 272.51 b | 934.69 a | |
L9G1 | 25 | 1 215.97 c | 229.82 b | 696.45 c |
4 | 1 758.16 b | 264.91 a | 2 462.18 a | |
0 | 1 977.45 a | 229.36 b | 1 564.87 b |
材料 Material | SOD | CAT | POD | MDA | Pro | SS | SP | H2O2 | REC |
---|---|---|---|---|---|---|---|---|---|
L9 | 168.62 | 36.93 | 98.74 | 203.13 | 221.93 | 116.62 | 102.82 | 164.24 | 88.78 |
G1 | 165.93 | 161.58 | 252.28 | 194.26 | 249.70 | 299.65 | 82.77 | 97.38 | 113.46 |
G1L9 | 86.96 | 113.19 | 136.49 | 117.56 | 231.16 | 184.69 | 159.26 | 88.84 | 213.77 |
L9G1 | 162.62 | 99.80 | 224.69 | 226.54 | 370.05 | 186.33 | 117.94 | 45.00 | 95.43 |
表3 不同马铃薯的生理指标抗寒系数
Table 3 Cold resistance coefficient of physiological indexes of different potato materials %
材料 Material | SOD | CAT | POD | MDA | Pro | SS | SP | H2O2 | REC |
---|---|---|---|---|---|---|---|---|---|
L9 | 168.62 | 36.93 | 98.74 | 203.13 | 221.93 | 116.62 | 102.82 | 164.24 | 88.78 |
G1 | 165.93 | 161.58 | 252.28 | 194.26 | 249.70 | 299.65 | 82.77 | 97.38 | 113.46 |
G1L9 | 86.96 | 113.19 | 136.49 | 117.56 | 231.16 | 184.69 | 159.26 | 88.84 | 213.77 |
L9G1 | 162.62 | 99.80 | 224.69 | 226.54 | 370.05 | 186.33 | 117.94 | 45.00 | 95.43 |
指标 Index | SOD | CAT | POD | MDA | Pro | SS | SP | H2O2 |
---|---|---|---|---|---|---|---|---|
CAT | -0.162 | |||||||
POD | 0.340 | 0.809 | ||||||
MDA | 0.942 | -0.203 | 0.389 | |||||
Pro | 0.302 | 0.120 | 0.574 | 0.586 | ||||
SS | 0.087 | 0.961* | 0.851 | -0.011 | 0.076 | |||
SP | -0.907 | -0.128 | -0.445 | -0.737 | -0.027 | -0.394 | ||
H2O2 | 0.197 | -0.571 | -0.691 | -0.056 | -0.797 | -0.420 | -0.282 | |
REC | -0.984* | 0.303 | -0.242 | -0.968* | -0.367 | 0.072 | 0.821 | -0.192 |
表4 各指标相关系数矩阵
Table 4 Correlation coefficient matrix of each index
指标 Index | SOD | CAT | POD | MDA | Pro | SS | SP | H2O2 |
---|---|---|---|---|---|---|---|---|
CAT | -0.162 | |||||||
POD | 0.340 | 0.809 | ||||||
MDA | 0.942 | -0.203 | 0.389 | |||||
Pro | 0.302 | 0.120 | 0.574 | 0.586 | ||||
SS | 0.087 | 0.961* | 0.851 | -0.011 | 0.076 | |||
SP | -0.907 | -0.128 | -0.445 | -0.737 | -0.027 | -0.394 | ||
H2O2 | 0.197 | -0.571 | -0.691 | -0.056 | -0.797 | -0.420 | -0.282 | |
REC | -0.984* | 0.303 | -0.242 | -0.968* | -0.367 | 0.072 | 0.821 | -0.192 |
主成分 | 特征值 | 贡献率 | 累计贡献率 |
---|---|---|---|
Principal component | Eigenvalue | Contribution rate/% | Cumulative contribution rate/% |
1 | 4.152 | 46.128 | 46.128 |
2 | 3.263 | 36.252 | 82.380 |
3 | 1.586 | 17.620 | 100.000 |
表5 主成分特征值及贡献率
Table 5 Principal component charactor values and contribution rates
主成分 | 特征值 | 贡献率 | 累计贡献率 |
---|---|---|---|
Principal component | Eigenvalue | Contribution rate/% | Cumulative contribution rate/% |
1 | 4.152 | 46.128 | 46.128 |
2 | 3.263 | 36.252 | 82.380 |
3 | 1.586 | 17.620 | 100.000 |
指标 Index | 主成分载荷矩阵 Principal component load matrix | 特征向量 Eigenvector | ||
---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | |
SOD | 0.896 | -0.432 | 0.440 | -0.240 |
CAT | 0.218 | 0.909 | 0.110 | 0.500 |
POD | 0.712 | 0.701 | 0.350 | 0.390 |
MDA | 0.908 | -0.352 | 0.450 | -0.190 |
Pro | 0.567 | 0.295 | 0.280 | 0.160 |
SS | 0.409 | 0.765 | 0.200 | 0.420 |
SP | -0.838 | 0.249 | -0.410 | 0.140 |
H2O2 | -0.227 | -0.794 | -0.110 | -0.440 |
REC | -0.853 | 0.519 | -0.420 | 0.290 |
表6 主成分载荷矩阵和特征向量
Table 6 Principal component load matrix and eigenvector
指标 Index | 主成分载荷矩阵 Principal component load matrix | 特征向量 Eigenvector | ||
---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | |
SOD | 0.896 | -0.432 | 0.440 | -0.240 |
CAT | 0.218 | 0.909 | 0.110 | 0.500 |
POD | 0.712 | 0.701 | 0.350 | 0.390 |
MDA | 0.908 | -0.352 | 0.450 | -0.190 |
Pro | 0.567 | 0.295 | 0.280 | 0.160 |
SS | 0.409 | 0.765 | 0.200 | 0.420 |
SP | -0.838 | 0.249 | -0.410 | 0.140 |
H2O2 | -0.227 | -0.794 | -0.110 | -0.440 |
REC | -0.853 | 0.519 | -0.420 | 0.290 |
材料 Material | 综合得分 Comprehensive score | 隶属函数值 Membership function value | 综合抗寒能力 Comprehensive cold resistance ability | 排序 Ranking | ||
---|---|---|---|---|---|---|
F1 | F2 | μ1 | μ2 | |||
L9 | -0.205 | -2.664 | 0.603 | 0 | 0.338 | 4 |
G1 | 1.511 | 1.141 | 1.000 | 1.000 | 1.000 | 1 |
G1L9 | -2.815 | 1.061 | 0 | 0.979 | 0.431 | 3 |
L9G1 | 1.509 | 0.463 | 0.999 | 0.822 | 0.921 | 2 |
权重Weight | — | — | 0.560 | 0.440 | — | — |
表7 不同马铃薯材料抗寒指标综合得分、隶属函数值、综合抗寒能力及抗寒性排序
Table 7 Cold resistance index comprehensive score, membership function value, cold resistance and cold resistance ranking of different potato materials
材料 Material | 综合得分 Comprehensive score | 隶属函数值 Membership function value | 综合抗寒能力 Comprehensive cold resistance ability | 排序 Ranking | ||
---|---|---|---|---|---|---|
F1 | F2 | μ1 | μ2 | |||
L9 | -0.205 | -2.664 | 0.603 | 0 | 0.338 | 4 |
G1 | 1.511 | 1.141 | 1.000 | 1.000 | 1.000 | 1 |
G1L9 | -2.815 | 1.061 | 0 | 0.979 | 0.431 | 3 |
L9G1 | 1.509 | 0.463 | 0.999 | 0.822 | 0.921 | 2 |
权重Weight | — | — | 0.560 | 0.440 | — | — |
[1] | 王明霞, 梅超, 宋倩娜, 等. 低温胁迫下6种马铃薯组培苗耐寒性评价[J]. 山西农业科学, 2021, 49(12): 1502-1506. |
WANG M X, MEI C, SONG Q N, et al. Evaluation on cold tolerance of six potato seedlings in tissue culture under low temperature stress[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(12): 1502-1506. (in Chinese with English abstract) | |
[2] | 丁红映, 田宇豪, 李青, 等. 马铃薯低温胁迫的生理响应及耐寒性综合评价[J]. 西南农业学报, 2020, 33(6): 1165-1170. |
DING H Y, TIAN Y H, LI Q, et al. Physiological responds of potato seedings to low temperature stress and comprehensive evaluation on their cold tolerance[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(6): 1165-1170. (in Chinese with English abstract) | |
[3] | 刘文奇, 徐世宏, 马善团, 等. 广西马铃薯产业发展现状和潜力分析与对策思考[J]. 南方农业学报, 2013, 44(3): 535-539. |
LIU W Q, XU S H, MA S T, et al. Current status, potential and strategy of potato industry development in Guangxi[J]. Journal of Southern Agriculture, 2013, 44(3): 535-539. (in Chinese with English abstract) | |
[4] | LEE J, BANG H, HAM H. Quality of cucumber fruit as affected by rootstock[J]. Acta Horticulturae, 1999(483): 117-124. |
[5] | XING W W, LI L, GAO P, et al. Effects of grafting with pumpkin rootstock on carbohydrate metabolism in cucumber seedlings under Ca(NO3)2 stress[J]. Plant Physiology and Biochemistry, 2015, 87: 124-132. |
[6] | XU J Y, CHEN Z, WANG F Z, et al. Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation[J]. Scientific Reports, 2020, 10: 5242. |
[7] | LI H, GUO Y L, LAN Z X, et al. Methyl jasmonate mediates melatonin-induced cold tolerance of grafted watermelon plants[J]. Horticulture Research, 2021, 8: 57. |
[8] | 曹建华, 林位夫, 陈俊明. 砧木与接穗嫁接亲合力研究综述[J]. 热带农业科学, 2005, 25(4): 64-69. |
CAO J H, LIN W F, CHEN J M. Studies of affinity between rootstock and scion[J]. Chinese Journal of Tropical Agriculture, 2005, 25(4): 64-69. (in Chinese with English abstract) | |
[9] | LANG Y Q, KISAKA H, SUGIYAMA R, et al. Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in Capsicum annuum cv. CH-19 Sweet[J]. The Plant Journal, 2009, 59(6): 953-961. |
[10] | HAN Y, WANG Y H, JIANG H, et al. Reciprocal grafting separates the roles of the root and shoot in sex-related drought responses in Populus cathayana males and females[J]. Plant, Cell & Environment, 2013, 36(2): 356-364. |
[11] | 施先锋. 南瓜砧木嫁接提高西瓜耐冷性的生理机制及蛋白质组学研究[D]. 武汉: 华中农业大学, 2019. |
SHI X F. Physiological mechanism and proteomics research of improved cold tolerance of watermelon seedlings by grafting onto pumpkin rootstock[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese with English abstract) | |
[12] | 鲁军阳. 南瓜砧木嫁接提高西瓜耐冷性的机制研究[D]. 武汉: 华中农业大学, 2021. |
LU J Y. The mechanism of pumpkin rootstock grafting improve watermelon chilling tolerance[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese with English abstract) | |
[13] | 张晓艳. 砧穗互作与茄子嫁接苗抗冷性的关系[D]. 泰安: 山东农业大学, 2009. |
ZHANG X Y. Effect of interaction between rootstock and scion on cold resistance of grafted eggplant[D]. Taian: Shandong Agricultural University, 2009. (in Chinese with English abstract) | |
[14] | 刘益勇. 嫁接对低温胁迫下茄子幼苗生理影响及基于转录组测序的耐低温基因挖掘[D]. 扬州: 扬州大学, 2021. |
LIU Y Y. Physiological effects of grafting on eggplant seedlings under low temperature stress and low temperature tolerance gene mining based on transcriptome sequencing[D]. Yangzhou: Yangzhou University, 2021. (in Chinese with English abstract) | |
[15] | 吴波. 耐冷砧木嫁接提高番茄苗低温适应性的机制[D]. 武汉: 华中农业大学, 2021. |
WU B. Mechanism of improving chilling adaptability of tomato seedlings by grafting onto cold-tolerant rootstock[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese with English abstract) | |
[16] | 郝婷, 丁小涛, 余纪柱, 等. 丝瓜作砧木对黄瓜幼苗耐热性的影响[J]. 浙江农业学报, 2015, 27(3): 365-371. |
HAO T, DING X T, YU J Z, et al. Effect of towel gourd as rootstock on thermal tolerance of cucumber seedlings[J]. Acta Agriculturae Zhejiangensis, 2015, 27(3): 365-371. (in Chinese with English abstract) | |
[17] | 张雅, 何勇, 朱祝军, 等. 低温弱光对茄子嫁接苗和自根苗抗氧化酶系统的影响[J]. 浙江农业学报, 2008, 20(6): 428-431. |
ZHANG Y, HE Y, ZHU Z J, et al. Effects of low temperature and poor light on the antioxidant enzymes in leaves of own-rooted and grafted eggplant seedlings[J]. Acta Agriculturae Zhejiangensis, 2008, 20(6): 428-431. (in Chinese with English abstract) | |
[18] | 王晓黎, 王宏, 黄涛, 等. 番茄嫁接紫色春马铃薯共生培育方法[J]. 四川农业科技, 2015(4): 15-16. |
WANG X L, WANG H, HUANG T, et al. Symbiotic cultivation method of tomato graf purple spring potato[J]. Sichuan Agricultural Science and Technology, 2015(4): 15-16. (in Chinese with English abstract) | |
[19] | 李悦欣. 嫁接提高马铃薯晚疫病抗性机理研究[D]. 贵阳: 贵州大学, 2022. |
LI Y X. The mechanism of improving late blight resistance by grafting in Solanum tuberosum[D]. Guiyang: Guizhou University, 2022. (in Chinese with English abstract) | |
[20] | 祁利潘, 王宽, 冯琰, 等. 种间杂交创制高淀粉含量马铃薯新种质[J]. 植物遗传资源学报, 2022, 23(4): 1026-1036. |
QI L P, WANG K, FENG Y, et al. Innovating high starch content potato germplasm by interspecific crosses[J]. Journal of Plant Genetic Resources, 2022, 23(4): 1026-1036. (in Chinese with English abstract) | |
[21] | 刘国敏, 谢振兴, 覃维治, 等. 不同砧穗组合嫁接对马铃薯抗寒性的影响[J]. 黑龙江农业科学, 2023(2): 11-16. |
LIU G M, XIE Z X, QIN W Z, et al. Effects of grafting with different rootstock and scions combinations on cold resistance of potato[J]. Heilongjiang Agricultural Sciences, 2023(2): 11-16. (in Chinese with English abstract) | |
[22] | 刘国敏, 谢振兴, 郑虚, 等. 一种利用嫁接提高马铃薯抗寒性的方法: CN116114582B[P]. 2024-06-25. |
[23] | 郭新送, 黄剑, 刘晓辰, 等. 马铃薯苗期叶片喷施不同浓度腐植酸对低温胁迫的生理响应[J]. 中国农学通报, 2024, 40(17): 28-35. |
GUO X S, HUANG J, LIU X C, et al. Physiological response of potato seedling leaves to low temperature stress by spraying different concentrations of humic acid[J]. Chinese Agricultural Science Bulletin, 2024, 40(17): 28-35. (in Chinese with English abstract) | |
[24] | HEATH R L, PACKER L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation[J]. Archives of Biochemistry and Biophysics, 1968, 125(1): 189-198. |
[25] | 李忠光, 龚明. 植物生理学综合性和设计性实验教程[M]. 武汉: 华中科技大学出版社, 2014. |
[26] | 刘杜玲, 张博勇, 孙红梅, 等. 早实核桃不同品种抗寒性综合评价[J]. 园艺学报, 2015, 42(3): 545-553. |
LIU D L, ZHANG B Y, SUN H M, et al. Comprehensive evaluation on cold resistance of early fruiting walnut cultivars[J]. Acta Horticulturae Sinica, 2015, 42(3): 545-553. (in Chinese with English abstract) | |
[27] | 沈静, 杜若曦, 魏婷, 等. 干制方式对鲜食枣脆片香气品质的影响[J]. 食品科学, 2017, 38(18): 131-137. |
SHEN J, DU R X, WEI T, et al. Effect of drying methods on aroma components of jujube fruits(Ziziphus jujube Mill. cv. Dongzao)[J]. Food Science, 2017, 38(18): 131-137. (in Chinese with English abstract) | |
[28] | 杨慧菊, 郭华春. 马铃薯不同品种抗寒性综合评价[J]. 分子植物育种, 2017, 15(2): 716-724. |
YANG H J, GUO H C. Comprehensive evalution of cold resistence of potato varieties[J]. Molecular Plant Breeding, 2017, 15(2): 716-724. (in Chinese with English abstract) | |
[29] | 聂秀美, 赵桂琴, 柴继宽, 等. 黄土高原半干旱区引进燕麦种质的适应性评价[J]. 草原与草坪, 2019, 39(2): 25-31. |
NIE X M, ZHAO G Q, CHAI J K, et al. High-yield and high-resistant oat germplasm selection in Semi-arid areas of the Loess Plateau[J]. Grassland and Turf, 2019, 39(2): 25-31. (in Chinese with English abstract) | |
[30] | 陈禹兴, 付连双, 王晓楠, 等. 低温胁迫对冬小麦恢复生长后植株细胞膜透性和丙二醛含量的影响[J]. 东北农业大学学报, 2010, 41(10): 10-16. |
CHEN Y X, FU L S, WANG X N, et al. Effect of freezing stress on membrane permeability and MDA content in the re-growth plant of winter wheat cultivars[J]. Journal of Northeast Agricultural University, 2010, 41(10): 10-16. (in Chinese with English abstract) | |
[31] | 黄杏, 陈明辉, 杨丽涛, 等. 低温胁迫下外源ABA对甘蔗幼苗抗寒性及内源激素的影响[J]. 华中农业大学学报, 2013, 32(4): 6-11. |
HUANG X, CHEN M H, YANG L T, et al. Effects of exogenous abscisic acid on cell membrane and endogenous hormones contents in leaves of sugarcane seedling under cold stress[J]. Journal of Huazhong Agricultural University, 2013, 32(4): 6-11. (in Chinese with English abstract) | |
[32] | 王玲丽, 贾文杰, 马璐琳, 等. 低温胁迫对不同百合主要生理指标的影响[J]. 植物生理学报, 2014, 50(9): 1413-1422. |
WANG L L, JIA W J, MA L L, et al. Influences of low temperature stress on the main physiological indexes of different Lilium[J]. Plant Physiology Journal, 2014, 50(9): 1413-1422. (in Chinese with English abstract) | |
[33] | 张保青, 杨丽涛, 李杨瑞. 自然条件下甘蔗品种抗寒生理生化特性的比较[J]. 作物学报, 2011, 37(3): 496-505. |
ZHANG B Q, YANG L T, LI Y R. Comparison of physiological and biochemical characteristics related to cold resistance in sugarcane under field conditions[J]. Acta Agronomica Sinica, 2011, 37(3): 496-505. (in Chinese with English abstract) | |
[34] | 李轶冰, 杨顺强, 任广鑫, 等. 低温处理下不同禾本科牧草的生理变化及其抗寒性比较[J]. 生态学报, 2009, 29(3): 1341-1347. |
LI Y B, YANG S Q, REN G X, et al. Changes analysis in physiological properties of several gramineous grass species and cold-resistance comparison on under cold stress[J]. Acta Ecologica Sinica, 2009, 29(3): 1341-1347. (in Chinese with English abstract) | |
[35] | 余小芬, 线罕英, 邱学礼, 等. 低温与氮肥耦合对水稻生理指标的影响[J]. 西南农业学报, 2020, 33(10): 2190-2197. |
YU X F, XIAN H Y, QIU X L, et al. Coupling effect of low temperature and nitrogen on physiological indexes of rice[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(10): 2190-2197. (in Chinese with English abstract) | |
[36] | 王芳, 王淇, 赵曦阳. 低温胁迫下植物的表型及生理响应机制研究进展[J]. 分子植物育种, 2019, 17(15): 5144-5153. |
WANG F, WANG Q, ZHAO X Y. Research progress of phenotype and physiological response mechanism of plants under low temperature stress[J]. Molecular Plant Breeding, 2019, 17(15): 5144-5153. (in Chinese with English abstract) | |
[37] | SHAH F A, WEI X, WANG Q J, et al. Karrikin improves osmotic and salt stress tolerance via the regulation of the redox homeostasis in the oil plant Sapium sebiferum[J]. Frontiers in Plant Science, 2020, 11: 216. |
[38] | WANG S J, REN Y, HAN L N, et al. Insights on the impact of arbuscular mycorrhizal symbiosis on Eucalyptus grandis tolerance to drought stress[J]. Microbiology Spectrum, 2023, 11(2): e0438122. |
[39] | LU Y J, LI N Y, SUN J, et al. Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress[J]. Tree Physiology, 2013, 33(1): 81-95. |
[40] | 耿亚林, 李瑶, 潘攀, 等. 叶菜型甘薯资源耐寒性评价体系研究[J]. 西南农业学报, 2023, 36(3): 532-540. |
GENG Y L, LI Y, PAN P, et al. Evaluation system of cold tolerance of leaf-vegetable sweet potato resources[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(3): 532-540. (in Chinese with English abstract) | |
[41] | 陈明辉, 程世平, 张志录, 等. 不同品种果蔗幼苗对低温的生理响应及耐寒性评价[J]. 华南农业大学学报, 2018, 39(2): 40-46. |
CHEN M H, CHENG S P, ZHANG Z L, et al. Physiological response and cold resistance evaluation of seedlings of different chewing cane cultivars to low temperature[J]. Journal of South China Agricultural University, 2018, 39(2): 40-46. (in Chinese with English abstract) |
[1] | 谭海霞, 彭红丽, 王连龙, 魏建梅. 马铃薯健康株与疮痂病株根区土壤微生物群落多样性差异分析[J]. 浙江农业学报, 2025, 37(8): 1743-1754. |
[2] | 谈亚丽, 高梦祥, 李晓洁, 周英杰, 熊健, 曾子琦, 李啸, 杨华. 湖北省主栽核桃在不同采收期的品质[J]. 浙江农业学报, 2025, 37(7): 1459-1468. |
[3] | 江振蓝, 陈付勋, 罗双飞, 罗烨琴, 沙晋明. 基于多光谱变换和主成分分析的土壤全铁含量随机森林模型反演[J]. 浙江农业学报, 2025, 37(7): 1521-1532. |
[4] | 岳丽, 庄红梅, 祖力皮牙·买买提, 王佳敏, 毛红艳, 张英仙, 尼格尔热依·亚迪卡尔, 于明. 基于主成分分析与聚类分析的芜菁肉质根质地品质综合评价[J]. 浙江农业学报, 2025, 37(5): 1057-1071. |
[5] | 刘思彤, 侯宇, 潘家荃, 周桦楠, 崔亮, 万博, 于涛. 甘薯对低温胁迫的生理响应及耐寒性评价[J]. 浙江农业学报, 2025, 37(4): 767-778. |
[6] | 谈静如, 胡齐赞, 岳智臣, 陶鹏, 雷娟利, 李必元, 赵彦婷, 臧运祥. 基于叶绿素荧光参数的苗用型大白菜耐热性综合评价体系[J]. 浙江农业学报, 2025, 37(2): 288-299. |
[7] | 潘志洪, 温雪婷, 杨华, 吕文涛, 张俊杰, 肖英平. 番鸭肌肉氨基酸谱发育性变化研究[J]. 浙江农业学报, 2024, 36(9): 2010-2019. |
[8] | 刘泉东, 孙伟, 张华, 刘小龙, 李辉, 王虎存. 跨越式膜上对行覆土装置设计与覆土性能研究[J]. 浙江农业学报, 2024, 36(5): 1173-1184. |
[9] | 薛贤滨, 贾琼, 陈峥峰, 黎瑞源, 陈庆富, 石桃雄. 基于主成分分析的苦荞麦重组自交系农艺性状综合评价[J]. 浙江农业学报, 2024, 36(4): 748-759. |
[10] | 丛杰, 张悦如, 李禧龙, 潘宇轩, 吕黄珍, 吕程序. 手持式马铃薯干物质含量无损检测装置设计与试验[J]. 浙江农业学报, 2024, 36(4): 943-951. |
[11] | 杨洋, 袁璐, 刘彬, 王挺进, 张爱珺, 刘柯, 李旭青, 道丽筠, 袁鑫, 陈利萍. 植物间水平基因转移——基因交流新途径及其农业利用潜力[J]. 浙江农业学报, 2024, 36(2): 455-469. |
[12] | 郭发旭, 冯全, 杨森, 杨婉霞. 基于无人机高光谱的马铃薯冠层叶片全氮含量反演[J]. 浙江农业学报, 2023, 35(8): 1904-1914. |
[13] | 叶雷, 张波, 杨学圳, 李小林, 张小平, 谭伟. 竹屑替代木屑栽培毛木耳的可行性及其品质综合评价[J]. 浙江农业学报, 2023, 35(6): 1416-1426. |
[14] | 张红梅, 王保君, 沈亚强, 程旺大. 浙北地区不同粒形优质粳稻产量和品质对播期调控的响应[J]. 浙江农业学报, 2023, 35(12): 2751-2762. |
[15] | 王如月, 罗莎莎, 甄紫怡, 吴嘉龙, 徐业勇, 孙雅丽, 胡晓静, 虎海防. 风味皇后杏李果实不同成熟度特性研究[J]. 浙江农业学报, 2023, 35(12): 2865-2877. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||