浙江农业学报 ›› 2024, Vol. 36 ›› Issue (5): 1173-1184.DOI: 10.3969/j.issn.1004-1524.20230730
刘泉东1,2(), 孙伟1,*(
), 张华1, 刘小龙1, 李辉1, 王虎存1
收稿日期:
2023-06-05
出版日期:
2024-05-25
发布日期:
2024-05-29
作者简介:
刘泉东(1995—),男,甘肃榆中人,硕士,主要从事农业机械装配研究。E-mail: l18368913176@163.com
通讯作者:
* 孙伟,E-mail: sunw@gsau.edu.cn
基金资助:
LIU Quandong1,2(), SUN Wei1,*(
), ZHANG Hua1, LIU Xiaolong1, LI Hui1, WANG Hucun1
Received:
2023-06-05
Online:
2024-05-25
Published:
2024-05-29
摘要:
针对西北寒旱区马铃薯全膜覆盖种行覆土栽培农艺要求,研制一种跨越式膜上对行覆土装置。解析跨越式提土装置和侧向对行覆土装置作业机理,确定了各个部件的核心作业参数。运用离散单元法(DEM)进行了对行覆土仿真试验,结合Box-Behnken 试验设计原理,采用三因素三水平响应曲面法,建立了覆土宽度和覆土厚度的回归模型,优化得到跨越式膜上对行覆土装置的最优作业参数组合为螺旋输土器转速135 r·min-1,覆土器开口长度100 mm,覆土器离地高度为233 mm。田间试验表明,设计的跨越式对行覆土装置满足马铃薯种植农艺要求,马铃薯幼苗自然出苗率达到92.5%,同时烧苗率为7%。
中图分类号:
刘泉东, 孙伟, 张华, 刘小龙, 李辉, 王虎存. 跨越式膜上对行覆土装置设计与覆土性能研究[J]. 浙江农业学报, 2024, 36(5): 1173-1184.
LIU Quandong, SUN Wei, ZHANG Hua, LIU Xiaolong, LI Hui, WANG Hucun. Design and performance study of leaping-over type soil covering device on film[J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1173-1184.
图1 马铃薯全膜覆盖种行覆土栽培模式 1,马铃薯块茎;2,马铃薯垄体;3,马铃薯秧;4,种行覆土;5,集雨微槽。
Fig.1 Cultivation mode of potato mulched with full film and soil covering on seed row 1, Potato tuber; 2, Potato ridge; 3, Potato seedling; 4, Soil covering on seed row; 5, Rainwater collecting micro-groove.
图2 马铃薯全膜覆盖种行覆土种植机结构简图 1,勺链式马铃薯播种装置;2,肥箱;3,机架;4,集雨槽开沟器;5,开沟器;6,地轮;7,跨越式提土装置;8,覆膜机构;9,侧向对行覆土装置;10,种箱。
Fig.2 Structure diagram of potato mulched with full film and soil covering on seed row 1, Scoop chain potato sowing device; 2, Fertilizer box; 3, Frame; 4, Rainwater collecting tank ditcher; 5, Ditcher; 6, Ground wheel; 7, Leaping-type soil lifting device; 8, Film mulching device; 9, Lateral soil covering device; 10, Seed box.
图3 跨越式膜上对行覆土装置示意图 1,机架;2,地轮;3,开沟起土铲;4,垄体;5,覆膜机构;6,膜边覆土;7,种行覆土;8,地膜;9,侧向输土装置;10,提土机构;11,减速器;12,输入轴;13,起土铲深度调节机构。
Fig.3 Schematic diagram of leaping-over type soil covering device 1, Frame; 2, Ground wheel; 3, Trenching shovel; 4, Ridge body; 5, Film covering device; 6, Soil covering on the edge; 7, Soil covering on the film; 8, Plastic film; 9, Lateral soil conveying device; 10, Soil lifting device; 11, Reducer; 12, Input shaft; 13, Depth adjustment device of soil lifting shovel.
图4 接触开沟起土铲土壤颗粒受力分析图 1,垄沟;2.土壤颗粒;3.开沟起土铲。N为土壤颗粒分别受到铲面的支持力, f为摩擦力,N;mg为土壤颗粒重力,N;v为机组前进速度,m·s-1;a为开沟起土铲安装倾角,°;μ为土壤与开沟起土铲的摩擦系数;α1为开沟起土铲铲刃斜角。
Fig.4 Stress analysis of soil particles in contact with soil lifting and trenching shovel 1, Ridges and ditches; 2, Soil particles; 3, Trenching shovel. N is the supporting force of soil particles on the shovel surface, f is the friction force, N; mg is the gravity of soil particles, N; v is the forward velocity of the planter, m·s-1; a is the installation inclination angle of the trenching shovel, °; μ is the friction coefficient between the soil and the trenching shovel; α1 is the slope angle of the trenching and lifting shovel blade.
图5 跨越式提土装置工作原理示意图 1,土壤;2,开沟起土铲;3,从动轮;4,刮板;5,升运带。B为刮板宽度,m;h为刮板高度,m;v'为升运带线速度,m·s-1;γ土壤提升机构安装倾角,kg·m-3;e为刮土板安装距离,mm;δ为开沟起土铲与刮板最低点的垂直距离,mm。
Fig.5 Schematic diagram of working principle of leaping-over type soil lifting device 1, Soil; 2, Trenching shovel; 3, Driven wheel; 4, Scraper; 5, Lifting belt. B is the scraper width, m; h is the scraper height, m; v’ is the scraper chain speed, m·s-1; γ is the installation inclination of soil lifting device, kg·m-3; e is the installation distance of the scraper, mm; δ is the vertical distance between the earth scraper and the lowest point of the scraper, mm.
图6 侧向对行覆土装置工作示意图 1,提土机构;2,刮板;3,输土器;4,螺旋输土轴;5,螺旋输土器。D为螺旋输土器螺旋叶片直径,mm;d为螺旋输土轴直径,mm;S为螺距,mm。
Fig.6 Schematic diagram of lateral soil covering device 1, Soil lifting device; 2, Scraper; 3, Soil feeder; 4, Screw soil conveying shaft; 5. Screw soil conveying device. D is the diameter of spiral blade of spiral soil conveyor, mm; d is the diameter of screw soil conveying shaft, mm; S is the pitch, mm.
图7 土壤颗粒填充图 1,护罩;2,挡土板;3,螺旋输土轴;4,螺旋输土器;5,刮板;6,土壤颗粒;7,主动轮。r为覆土器半径mm;b为覆土器内部土壤厚度,mm;c为覆土器内部土壤宽度,mm;β为覆土厚度对应的圆心角的一半,mm。
Fig.7 Filling diagram of soil particles 1, Shield; 2, Retaining plate; 3, Screw soil conveying shaft; 4, Screw soil feeder; 5, Scraper; 6, Soil particles; 7. Driven wheel. r is the radius of soil covering device, mm; b is the thickness of the soil inside the soil cover, mm; c is the width of the soil inside the soil cover, mm; β is half of the central angle corresponding to the covering thickness, mm.
图8 侧向对行覆土装置土壤颗粒运动分析图 1,轴承座;2,土壤颗粒;3,螺旋输土器;4,膜边覆土;5,地膜;6,种行覆土。V1土壤颗粒轴向速度,m·s-1;V2土壤颗粒周向速度,m·s-1;α推运器的螺旋升角;φ摩擦角;t为覆土器开口长度,mm。
Fig.8 Analysis diagram of soil particle movement of lateral soil covering device 1, Bearing seat; 2, Soil particles; 3, Screw soil conveying device; 4, Soil covering on edge; 5, Plastic film; 6, Soil covering on seeding row. V1 is the axial velocity of soil particles, m·s-1; V2 is the circumferential velocity of soil particles, m·s-1; α is the spiral rise angle of the pusher; φ is the friction angle, t is the opening length of the soil covering device, mm.
项目 Project | 类别 Category | 泊松比 Poisson’s ratio | 剪切模量 Shear modulus/Pa | 密度 Density/(kg·m-3) |
---|---|---|---|---|
材料参数 | 土壤Soil | 0.40 | 1×106 | 1 300 |
Material parameters | 钢Steel | 0.28 | 3.5×1010 | 7 850 |
地膜Film | 0.49 | 6.1×106 | 1 000 | |
项目 Project | 类别 Category | 恢复系数 Restitution coefficient | 静摩擦系数 Static friction coefficient | 动摩擦系数 Dynamic friction coefficient |
接触参数 | 颗粒-颗粒Particle to particle | 0.21 | 0.68 | 0.27 |
Contact parameters | 颗粒-钢Particle to Steel | 0.54 | 0.31 | 0.13 |
颗粒-地膜Granular to film | 0.30 | 0.42 | 0.34 |
表1 仿真材料参数和接触参数
Table 1 Simulation material parameters and contact parameters
项目 Project | 类别 Category | 泊松比 Poisson’s ratio | 剪切模量 Shear modulus/Pa | 密度 Density/(kg·m-3) |
---|---|---|---|---|
材料参数 | 土壤Soil | 0.40 | 1×106 | 1 300 |
Material parameters | 钢Steel | 0.28 | 3.5×1010 | 7 850 |
地膜Film | 0.49 | 6.1×106 | 1 000 | |
项目 Project | 类别 Category | 恢复系数 Restitution coefficient | 静摩擦系数 Static friction coefficient | 动摩擦系数 Dynamic friction coefficient |
接触参数 | 颗粒-颗粒Particle to particle | 0.21 | 0.68 | 0.27 |
Contact parameters | 颗粒-钢Particle to Steel | 0.54 | 0.31 | 0.13 |
颗粒-地膜Granular to film | 0.30 | 0.42 | 0.34 |
水平 Level | A螺旋输土器转速 A Rotating speed of spiral soil conveyor/(r·min-1) | B覆土器开口长度 B Opening length of soil cover/mm | C覆土器离地高度 C Height of soil cover from the ground/mm |
---|---|---|---|
-1 | 120 | 80 | 200 |
0 | 150 | 100 | 250 |
1 | 180 | 120 | 300 |
表2 覆土试验因素与水平
Table 2 Factors and levels of soil covering test
水平 Level | A螺旋输土器转速 A Rotating speed of spiral soil conveyor/(r·min-1) | B覆土器开口长度 B Opening length of soil cover/mm | C覆土器离地高度 C Height of soil cover from the ground/mm |
---|---|---|---|
-1 | 120 | 80 | 200 |
0 | 150 | 100 | 250 |
1 | 180 | 120 | 300 |
处理 Treatment | A | B | C | 覆土宽度 Soil covering width/mm | 覆土厚度 Soil covering thickness/mm |
---|---|---|---|---|---|
1 | 150 | 120 | 300 | 261.70 | 43.0 |
2 | 150 | 100 | 250 | 245.64 | 50.7 |
3 | 120 | 120 | 250 | 204.70 | 45.3 |
4 | 120 | 100 | 300 | 249.96 | 43.7 |
5 | 150 | 100 | 250 | 245.64 | 50.7 |
6 | 150 | 80 | 200 | 201.95 | 49.1 |
7 | 150 | 120 | 200 | 218.13 | 52.2 |
8 | 180 | 100 | 200 | 222.80 | 50.5 |
9 | 150 | 100 | 250 | 245.64 | 50.7 |
10 | 180 | 80 | 250 | 249.01 | 53.0 |
11 | 180 | 120 | 250 | 245.00 | 51.5 |
12 | 120 | 100 | 200 | 212.20 | 54.2 |
13 | 180 | 100 | 300 | 276.12 | 43.3 |
14 | 120 | 80 | 250 | 233.60 | 48.8 |
15 | 150 | 80 | 300 | 258.20 | 50.3 |
16 | 150 | 100 | 250 | 245.64 | 50.7 |
17 | 150 | 100 | 250 | 245.64 | 50.7 |
表3 响应曲面分析结果
Table 3 Response surface analysis results
处理 Treatment | A | B | C | 覆土宽度 Soil covering width/mm | 覆土厚度 Soil covering thickness/mm |
---|---|---|---|---|---|
1 | 150 | 120 | 300 | 261.70 | 43.0 |
2 | 150 | 100 | 250 | 245.64 | 50.7 |
3 | 120 | 120 | 250 | 204.70 | 45.3 |
4 | 120 | 100 | 300 | 249.96 | 43.7 |
5 | 150 | 100 | 250 | 245.64 | 50.7 |
6 | 150 | 80 | 200 | 201.95 | 49.1 |
7 | 150 | 120 | 200 | 218.13 | 52.2 |
8 | 180 | 100 | 200 | 222.80 | 50.5 |
9 | 150 | 100 | 250 | 245.64 | 50.7 |
10 | 180 | 80 | 250 | 249.01 | 53.0 |
11 | 180 | 120 | 250 | 245.00 | 51.5 |
12 | 120 | 100 | 200 | 212.20 | 54.2 |
13 | 180 | 100 | 300 | 276.12 | 43.3 |
14 | 120 | 80 | 250 | 233.60 | 48.8 |
15 | 150 | 80 | 300 | 258.20 | 50.3 |
16 | 150 | 100 | 250 | 245.64 | 50.7 |
17 | 150 | 100 | 250 | 245.64 | 50.7 |
项目 Project | 变异来源 Source of variation | 方差和 Variance sum | 自由度 Freedom | 均方 Mean square | F | P | 显著性 Significance |
---|---|---|---|---|---|---|---|
覆土宽度 | 模型Model | 5 646.07 | 3 | 1 882.02 | 22.51 | <0.000 1 | ** |
Soil covering width/mm | A | 1 068.84 | 1 | 1 068.84 | 12.78 | 0.003 4 | ** |
B | 21.88 | 1 | 21.88 | 0.261 7 | 0.617 6 | ||
C | 4 555.35 | 1 | 4 555.35 | 54.48 | <0.000 1** | ||
残差Residual | 1 087.00 | 13 | 83.62 | 22.51 | <0.000 1 | ||
失拟Lack of fit | 1 087.00 | 9 | 120.78 | 12.78 | 0.003 4 | ||
误差Error | 0.000 0 | 4 | 0.000 0 | ||||
总和Sum | 6 733.06 | 16 | |||||
覆土厚度 | 模型Model | 98.10 | 3 | 32.70 | 4.81 | 0.018 2 | * |
Soil covering thickness/mm | A | 4.96 | 1 | 4.96 | 0.729 4 | 0.408 5 | * |
B | 10.58 | 1 | 10.58 | 1.56 | 0.234 3 | ||
C | 82.56 | 1 | 82.56 | 12.14 | 0.004 0 | * | |
残差Residual | 88.42 | 13 | 6.80 | ||||
失拟Lack of fit | 88.42 | 9 | 9.82 | ||||
误差Error | 0.000 0 | 4 | 0.000 0 | ||||
总和Sum | 186.52 | 16 |
表4 覆土宽度和覆土厚度方差分析
Table 4 Regression variance analysis of soil covering width and thickness
项目 Project | 变异来源 Source of variation | 方差和 Variance sum | 自由度 Freedom | 均方 Mean square | F | P | 显著性 Significance |
---|---|---|---|---|---|---|---|
覆土宽度 | 模型Model | 5 646.07 | 3 | 1 882.02 | 22.51 | <0.000 1 | ** |
Soil covering width/mm | A | 1 068.84 | 1 | 1 068.84 | 12.78 | 0.003 4 | ** |
B | 21.88 | 1 | 21.88 | 0.261 7 | 0.617 6 | ||
C | 4 555.35 | 1 | 4 555.35 | 54.48 | <0.000 1** | ||
残差Residual | 1 087.00 | 13 | 83.62 | 22.51 | <0.000 1 | ||
失拟Lack of fit | 1 087.00 | 9 | 120.78 | 12.78 | 0.003 4 | ||
误差Error | 0.000 0 | 4 | 0.000 0 | ||||
总和Sum | 6 733.06 | 16 | |||||
覆土厚度 | 模型Model | 98.10 | 3 | 32.70 | 4.81 | 0.018 2 | * |
Soil covering thickness/mm | A | 4.96 | 1 | 4.96 | 0.729 4 | 0.408 5 | * |
B | 10.58 | 1 | 10.58 | 1.56 | 0.234 3 | ||
C | 82.56 | 1 | 82.56 | 12.14 | 0.004 0 | * | |
残差Residual | 88.42 | 13 | 6.80 | ||||
失拟Lack of fit | 88.42 | 9 | 9.82 | ||||
误差Error | 0.000 0 | 4 | 0.000 0 | ||||
总和Sum | 186.52 | 16 |
图9 覆土宽度、覆土厚度单因素结果分析 A、B为螺旋输土器转速、覆土器离地高度分别对种行覆土厚度、种行覆土宽度的影响。
Fig.9 Analysis of single factor results of soil covering width and thickness A, B are the effects of the rotation speed of the screw conveyor and the height of the cover from the ground on the cover thickness and the cover width of the seed row.
序号 No. | A | B | C | 预测值Predictive value | 仿真值Simulation value | ||
---|---|---|---|---|---|---|---|
覆土宽度 Soil covering width/mm | 覆土厚度 Soil covering thickness/mm | 覆土宽度 Soil covering width/mm | 覆土厚度 Soil covering thickness/mm | ||||
1 | 169 | 100 | 250 | 246.24 | 49.82 | 251.70 | 48.00 |
2 | 169 | 100 | 210 | 227.15 | 52.39 | 228.20 | 51.70 |
3 | 155 | 100 | 280 | 255.16 | 47.52 | 254.25 | 45.10 |
4 | 135 | 100 | 233 | 225.00 | 50.00 | 226.20 | 52.00 |
表5 覆土量预测值与仿真值
Table 5 Predicted and simulated values of soil covering
序号 No. | A | B | C | 预测值Predictive value | 仿真值Simulation value | ||
---|---|---|---|---|---|---|---|
覆土宽度 Soil covering width/mm | 覆土厚度 Soil covering thickness/mm | 覆土宽度 Soil covering width/mm | 覆土厚度 Soil covering thickness/mm | ||||
1 | 169 | 100 | 250 | 246.24 | 49.82 | 251.70 | 48.00 |
2 | 169 | 100 | 210 | 227.15 | 52.39 | 228.20 | 51.70 |
3 | 155 | 100 | 280 | 255.16 | 47.52 | 254.25 | 45.10 |
4 | 135 | 100 | 233 | 225.00 | 50.00 | 226.20 | 52.00 |
图10 膜上种行覆土模拟过程 1为跨越式起土提土装置,2为侧向对行覆土装置,3为种行覆土,4为膜边覆土,图A~F为不同时间覆土图。
Fig.10 Simulation process of planting rows and covering soil on the film 1 is a crossing type soil lifting device, 2 is a lateral opposite row soil covering device, 3 is a seed row soil covering device, 4 is a membrane edge soil covering device, and Fig. A-F are soil covering figures at different time.
图11 覆土田间试验 A,覆土田间试验;B,覆土试验结果;C,马铃薯出苗图。
Fig.11 Field test of covering soil A, The field experiment with soil covering; B, The results of the soil covering experiment; C, The emergence of potatoes.
试验指标 Test indicators | 跨越式覆土装置性能参数 Performance parameters of spanning soil covering device | 国家标准 National standard |
---|---|---|
种行覆土宽度合格率Qualified rate of soil covering width in planting rows/% | 92 | ≥90 |
种行覆土厚度合格率Qualified rate of soil covering thickness in planting rows/% | 91 | ≥90 |
地膜采光面破损程度Degree of damage to the lighting surface of the plastic film/(mm·m-2) | 49.2 | ≤55 |
自然出苗率Natural seedling emergence rate/% | 92.5 | — |
烧苗率Seedling burning rate/% | 7 | — |
表6 试验结果
Table 6 Experimental results
试验指标 Test indicators | 跨越式覆土装置性能参数 Performance parameters of spanning soil covering device | 国家标准 National standard |
---|---|---|
种行覆土宽度合格率Qualified rate of soil covering width in planting rows/% | 92 | ≥90 |
种行覆土厚度合格率Qualified rate of soil covering thickness in planting rows/% | 91 | ≥90 |
地膜采光面破损程度Degree of damage to the lighting surface of the plastic film/(mm·m-2) | 49.2 | ≤55 |
自然出苗率Natural seedling emergence rate/% | 92.5 | — |
烧苗率Seedling burning rate/% | 7 | — |
[1] | ZHAO H, WANG R Y, MA B L, et al. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem[J]. Field Crops Research, 2014, 161: 137-148. |
[2] | QIN S H, ZHANG J L, DAI H L, et al. Effect of ridge-furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area[J]. Agricultural Water Management, 2014, 131: 87-94. |
[3] | 李明举, 刘垚, 周应友, 等. 不同地膜与覆盖方式对马铃薯经济性状及产量的影响[J]. 耕作与栽培, 2013(5): 37-38. |
LI M J, LIU Y, ZHOU Y Y, et al. Effects of different kind of plastic film and mulching methods on economic traits and yield of potato[J]. Tillage and Cultivation, 2013(5): 37-38. (in Chinese with English abstract) | |
[4] | LIU Q D, SUN W, ZHANG H A, et al. Numerical simulation and experiment of the emergence of young potato sprouts through soil-covered plastic mulching[J]. Agronomy Journal, 2023, 115(6): 2791-2800. |
[5] | 孙伟. 马铃薯自动破膜效应及全膜覆土技术研究[D]. 兰州: 甘肃农业大学, 2014. |
SUN W. Research on the automatic breaking effect of potato film and the technology of full film covering with soil[D]. Lanzhou: Gansu Agricultural University, 2014. (in Chinese with English abstract) | |
[6] | LIU Q D, SUN W, WANG H C, et al. Design and field test of a leaping type soil-covering device on plastic film[J]. Agriculture, 2023, 13(9): 1680. |
[7] | 孙伟, 刘小龙, 张华, 等. 马铃薯施肥播种起垄全膜覆盖种行覆土一体机设计[J]. 农业工程学报, 2017, 33(20): 14-22. |
SUN W, LIU X L, ZHANG H, et al. Design of potato casingsoil planter in all-in-one machine combined with fertilizing, sowing, ridging, complete film mulching and planting line covering[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20): 14-22. (in Chinese with English abstract) | |
[8] | 哈尔滨工业大学理论力学教研室. 理论力学-下册[M]. 5版. 北京: 高等教育出版社, 1997: 5-8. |
[9] | 孙伟, 王虎存, 赵武云, 等. 残膜回收型全膜覆土垄播马铃薯挖掘机设计与试验[J]. 农业机械学报, 2018, 49(9): 105-114. |
SUN W, WANG H C, ZHAO W Y, et al. Design and experiment of potato digger with waste film recollection for complete film mulching, soil covering and ridge sowing pattern[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 105-114. (in Chinese with English abstract) | |
[10] | 北京农业机械化学院. 农业机械学[M]. 北京: 农业出版社, 1981. |
[11] | 陈志. 农业机械设计手册[M]. 北京: 中国农业科学技术出版社, 2007. |
[12] | 戴飞, 宋学锋, 赵武云, 等. 微垄式覆膜覆土联合作业机设计与试验[J]. 农业机械学报, 2020, 51(3): 97-105, 129. |
DAI F, SONG X F, ZHAO W Y, et al. Design and experiment of operation machine for filming and covering soil on tiny ridges[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 97-105, 129. (in Chinese with English abstract) | |
[13] | 孙伟, 刘小龙, 石林榕, 等. 刮板升运带式膜上覆土装置覆土特性[J]. 机械工程学报, 2016, 52(7): 38-45. |
SUN W, LIU X L, SHI L R, et al. Covering soil on plastic-film characteristics of scraper lifting belt mechanism[J]. Journal of Mechanical Engineering, 2016, 52(7): 38-45. (in Chinese with English abstract) | |
[14] | 李革, 艾力·哈斯木, 康秀生, 等. 地膜播种机螺旋覆土滚筒的参数优化[J]. 农业工程学报, 2003, 19(6): 135-138. |
LI G, AILI·HASMU, KANG X S, et al. Parametric optimization of the spiral cylinder of a plastic-film mulch seeder[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(6): 135-138. (in Chinese with English abstract) | |
[15] | 陈学庚, 赵岩. 棉花双膜覆盖精量播种机的研制[J]. 农业工程学报, 2010, 26(4): 106-112. |
CHEN X G, ZHAO Y. Development of double-film mulch precision planter for cotton seeding[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 106-112. (in Chinese with English abstract) | |
[16] | 刘洋, 李亚雄, 王涛, 等. 两种膜上覆土机构特点及性能分析比较[J]. 新疆农垦科技, 2010, 33(3): 49-50. |
LIU Y, LI Y X, WANG T, et al. Analysis and comparison of characteristics and performance of two kinds of soil covering mechanisms on film[J]. Xinjiang Farm Research of Science and Technology, 2010, 33(3): 49-50. (in Chinese) | |
[17] | 杨文武, 罗锡文, 王在满, 等. 轮式拖拉机水田轮辙覆土装置设计与试验[J]. 农业工程学报, 2016, 32(16): 26-31. |
YANG W W, LUO X W, WANG Z M, et al. Design and experiment of track filling assembly mounted on wheeled-tractor for paddy fields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 26-31. (in Chinese with English abstract) | |
[18] | 向冬枝, 徐余伟. 螺旋输送机设计参数的选择和确定[J]. 水泥技术, 2010(1): 29-33. |
XIANG D Z, XU Y W. Design parameter selection of spiral conveyer[J]. Cement Technology, 2010(1): 29-33. (in Chinese with English abstract) | |
[19] | 王涛. 螺旋输送机出料口设计[J]. 中国井矿盐, 2019, 50(3): 25-27. |
WANG T. Design on material export of spiral conveyer[J]. China Well and Rock Salt, 2019, 50(3): 25-27. (in Chinese with English abstract) | |
[20] | 中华人民共和国农业部. 马铃薯种植机质量评价技术规范: NY/T 1415—2007[S]. 北京: 中国标准出版社, 2007. |
[21] | 中华人民共和国农业部. 铺膜穴播机作业质量: NY/T 987—2006[S]. 北京: 中国标准出版社, 2006. |
[1] | 丛杰, 张悦如, 李禧龙, 潘宇轩, 吕黄珍, 吕程序. 手持式马铃薯干物质含量无损检测装置设计与试验[J]. 浙江农业学报, 2024, 36(4): 943-951. |
[2] | 郭发旭, 冯全, 杨森, 杨婉霞. 基于无人机高光谱的马铃薯冠层叶片全氮含量反演[J]. 浙江农业学报, 2023, 35(8): 1904-1914. |
[3] | 李文翔, 王芳, 王舰. 马铃薯miR397的克隆及靶基因筛选[J]. 浙江农业学报, 2022, 34(6): 1141-1151. |
[4] | 袁文雅, 康益晨, 杨昕宇, 张茹艳, 周春涛, 王勇, 陈喜鹏, 余慧芳, 秦舒浩. 清水苜蓿土壤浸提液对连作马铃薯根际土壤环境酶活性和微生物群落的影响[J]. 浙江农业学报, 2022, 34(2): 240-247. |
[5] | 沈升法, 项超, 李兵, 罗志高, 吴列洪. 浙江省马铃薯种质资源的表型鉴定与多样性分析[J]. 浙江农业学报, 2022, 34(11): 2319-2328. |
[6] | 王海翼, 张兆国, IBRAHIM Issa, 解开婷, Wael EL-KOLALY, 曹钦洲. 丘陵山区小型马铃薯收获机设计与试验[J]. 浙江农业学报, 2021, 33(4): 724-738. |
[7] | 梁丽琴, 杨瑞, 郜刚. 马铃薯StUOXs基因家族的生物信息学分析[J]. 浙江农业学报, 2020, 32(9): 1523-1532. |
[8] | 许建民, 史和娣, 史培华, 张泽洋, 徐志刚. 不同光质条件下马铃薯光响应曲线拟合模型的比较[J]. 浙江农业学报, 2020, 32(5): 753-761. |
[9] | 刘紫英, 袁斌, 肖花美, 吴永飞, 刘小林, 胡祥飞. 马铃薯致病疫霉及其拮抗菌的筛选与鉴定[J]. 浙江农业学报, 2020, 32(5): 840-848. |
[10] | 韩悌倩, 刘震, 刘玉汇, 张小静, 王丽, 张俊莲. 减氮及有机替代对马铃薯根系形态和产量的影响[J]. 浙江农业学报, 2020, 32(12): 2111-2118. |
[11] | 马杰, 郑好, 周平, 陈春艳, 吴瑞, 马维, 宋雷, 孙勃. 马铃薯油菜素内酯信号激酶基因StBSKs的克隆与序列分析[J]. 浙江农业学报, 2019, 31(8): 1224-1230. |
[12] | 杨亚亚, 吴娜, 刘吉利, 杨娜娜, 蔡明, 何海锋. 马铃薯-燕麦间作对马铃薯氮含量和土壤氮素的影响[J]. 浙江农业学报, 2019, 31(12): 1955-1962. |
[13] | 程亮. 青海省部分地区马铃薯Y病毒cp基因序列分析[J]. 浙江农业学报, 2019, 31(11): 1888-1895. |
[14] | 洪森荣, 张铭心, 叶思雨, 宁本松. 高山马铃薯种质资源遗传多样性的同工酶分析[J]. 浙江农业学报, 2018, 30(9): 1445-1453. |
[15] | 王信, 程亮, 王亚艺, 高旭升, 李松龄. 青海省马铃薯黑胫病病原菌的鉴定[J]. 浙江农业学报, 2018, 30(8): 1369-1375. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||