浙江农业学报 ›› 2024, Vol. 36 ›› Issue (4): 943-951.DOI: 10.3969/j.issn.1004-1524.20230381

• 生物系统工程 • 上一篇    下一篇

手持式马铃薯干物质含量无损检测装置设计与试验

丛杰1,2(), 张悦如2, 李禧龙2, 潘宇轩2, 吕黄珍2, 吕程序2,*()   

  1. 1.青岛农业大学 机电工程学院,山东 青岛 266109
    2.中国农业机械化科学研究院集团有限公司 农业装备技术全国重点实验室,北京 100083
  • 收稿日期:2023-03-20 出版日期:2024-04-25 发布日期:2024-04-29
  • 作者简介:丛杰(1998—),男,山东威海人,硕士研究生,研究方向为农产品无损检测。E-mail:conglaishun@163.com
  • 通讯作者: *吕程序,E-mail:lvchengxu1026@163.com
  • 基金资助:
    现代农业产业技术体系建设专项资金项目(CARS-10)

Design and experiment of a handheld non-destructive detection device for potato dry matter content

CONG Jie1,2(), ZHANG Yueru2, LI Xilong2, PAN Yuxuan2, LYU Huangzhen2, LYU Chengxu2,*()   

  1. 1. School of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
    2. National Key Laboratory of Agricultural Equipment Technology, China Academy of Agricultural Mechanization Sciences Group Co., Ltd., Beijing 100083, China
  • Received:2023-03-20 Online:2024-04-25 Published:2024-04-29
  • Contact: LYU Chengxu

摘要:

面向马铃薯品质抽检的需求,研发了手持式马铃薯干物质无损检测装置。装置硬件部分包括光谱采集模块、电路控制模块、控制与显示模块、外壳模块,装置设计为枪形,尺寸为180 mm×85 mm×210 mm。利用装置采集可见-近红外漫反射光谱,比较Savitzky-Golay卷积平滑(SM)、一阶导数(first-order derivative, FD)、多元散射校正(multiple scattering correction, MSC)和标准正态变量变换(standard normal variate transformation, SNV)的预处理方式,SM结果较优。采用竞争性自适应重加权采样(competitive adapative reweighted sampling, CARS)筛选27个特征波长,建立马铃薯干物质含量的支持向量回归(support vector regression, SVR)预测模型,结果显示,验证集决定系数和均方根误差分别为0.802和0.98%。基于QT开发工具编写装置软件,包括黑白校正与测量模块、电量显示模块、光谱数据显示模块、保存数据模块、光谱数据刷新模块、检测结果显示模块。开展装置验证,预测均方根误差为1.01%,单次测量平均耗时为0.62 s。结果表明,手持式马铃薯干物质无损检测装置可快速、准确检测干物质含量,具有在马铃薯生产源头与加工现场应用的潜力。

关键词: 马铃薯, 干物质含量, 手持式装置, 可见-近红外漫反射光谱

Abstract:

In response to the demand for quality inspection of potatoes, a handheld non-destructive detection device for potato dry matter was developed. The hardware components of the device included a spectrum acquisition module, a circuit control module, a control and display module, device housing module. The design of the device was gun-shaped with dimensions of 180 mm×85 mm×210 mm. The device utilized visible-near infrared diffuse reflectance spectroscopy, comparing pre-processing methods such as Savitzky-Golay convolution smoothing (SM), first-order derivative (FD), multiple scattering correction (MSC), and standard normal variate transformation (SNV), with SM yielding better results. Competitive adaptive reweighted sampling (CARS) was used to select 27 feature wavelengths to establish a support vector regression (SVR) prediction model for potato dry matter content, with validation set coefficient of determination and root mean square error of 0.802 and 0.98%, respectively. The device software was developed using the QT development tool, including modules for black and white calibration and measurement, power display, spectral data display, data storage, spectral data refresh, and detection result display. Device verification was conducted, showing a prediction root mean square error of 1.01% and an average time consumption of 0.62 s per measurement. The results indicated that the handheld non-destructive detection device for potato dry matter could rapidly and accurately detect dry matter content, demonstrating potential for application at the source and processing sites of potato production.

Key words: potato, dry matter content, hand-held device, visible/near infrared diffuse reflectance spectroscopy

中图分类号: