浙江农业学报 ›› 2022, Vol. 34 ›› Issue (3): 590-598.DOI: 10.3969/j.issn.1004-1524.2022.03.20
闫宁1,2(), 张晗2,*(
), 董宏图3, 康凯3, 罗斌2
收稿日期:
2021-07-19
出版日期:
2022-03-25
发布日期:
2022-03-30
通讯作者:
张晗
作者简介:
张晗,E-mail: zhangha@nercita.org.cn基金资助:
YAN Ning1,2(), ZHANG Han2,*(
), DONG Hongtu3, KANG Kai3, LUO Bin2
Received:
2021-07-19
Online:
2022-03-25
Published:
2022-03-30
Contact:
ZHANG Han
摘要:
为提高基于机器视觉的小麦品种识别准确性,本文通过透射光和反射光同位图像分割对种子颜色特征参数进行了优化提取。采用透射光图像辅助反射光图像分割的方式从种子图像中分割出胚部区域,并分别提取小麦整粒、种胚、胚乳区域的颜色特征参数。以济麦22、济麦44、京麦9、京麦11共4个品种种子作为研究对象,利用HALCON机器视觉软件获取种子的颜色特征参数,通过偏最小二乘法判别分析法(partial least squares discriminant analysis,PLS-DA)建立分类模型。结果表明:通过透射光图像辅助反射光图像分割后,融合的更多种子颜色参数信息,使得4个品种的小麦种子识别正确率均获得提升。济麦和京麦间混杂识别正确率从种粒反射光颜色特征的95%提升到融合了透射光、胚和胚乳颜色特征的99%以上,济麦22和济麦44混杂识别正确率从73.28%提高到84.60%,京麦9和京麦11混杂识别正确率从74.15%提高到83.73%。通过透射光特征进一步融合分析种子胚和胚乳图像所包含的颜色特征可有效提高小麦品种识别正确率。
中图分类号:
闫宁, 张晗, 董宏图, 康凯, 罗斌. 基于透射光和反射光图像同位分割的小麦品种识别方法研究[J]. 浙江农业学报, 2022, 34(3): 590-598.
YAN Ning, ZHANG Han, DONG Hongtu, KANG Kai, LUO Bin. Wheat variety recognition method based on same position segmentation of transmitted light and reflected light images[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 590-598.
图1 纯度检测装置 1,暗室;2,工业相机;3,显微镜;4,主动环形光源;5,背部光源板;6,种子样本;7,载物台;8,小麦种子;9,计算机。
Fig.1 Purity detection device 1, Darkroom; 2, Industrial camera; 3, Microscope; 4, Active ring light source; 5, Back light source plate; 6, Seed samples; 7, Stage; 8, Wheat seeds; 9, Computer.
图2 小麦种子反射光图像和透射光图像 a,京麦9;b,京麦11;c,济麦22;d,济麦44。
Fig.2 Active light and backlight images of wheat seeds a, Jingmai 9; b, Jingmai 11; c, Jimai 22; d, Jimai 44.
图3 背景分割 a,透射光B通道;b,二值化;c,透射光图像;d,反射光图像。
Fig.3 Background segmentation a, Transmitted light channel B; b, Binarization; c, Transmitted light image; d, Reflected light image.
图5 胚部区域形态学处理 a,胚部二值化;b,分割连通域;c,胚部轮廓选择;d,区域闭运算。
Fig.5 Morphological treatment of embryonic region a, Embryo binarization; b, Split connected domain; c, Embryo contour selection; d, Region closed operation.
图6 胚部、胚乳部分割图像 a,胚部反射光图像;b,胚部透射光图像;c,胚乳反射光图像;d,胚乳透射光图像。
Fig.6 Images of embryo and endosperm sections a, Reflected light image of embryo; b, Transmitted light image of embryo; c, Reflected light image of endosperm; d, Transmitted light image of endosperm.
特征分类 Feature classification | 提取特征 Extract features | 分选区间 Sorting interval | 京麦9 Jingmai 9 | 京麦11 Jingmai 11 | 济麦22 Jimai 22 | 济麦44 Jimai 44 | 准确率 Accuracy/% |
---|---|---|---|---|---|---|---|
整粒Seeds | Btm | <84.215 | 3 | 4 | 49 | 47 | 94.5 |
≥84.215 | 47 | 46 | 1 | 3 | |||
Rtd | <35.09 | 2 | 4 | 49 | 43 | 93.0 | |
≥35.09 | 48 | 46 | 1 | 7 | |||
Gtd | <33.395 | 4 | 4 | 49 | 43 | 92.0 | |
≥33.395 | 46 | 46 | 1 | 7 | |||
Vtd | <35.22 | 2 | 4 | 49 | 43 | 93.0 | |
≥35.22 | 48 | 46 | 1 | 7 | |||
胚部Seed embryo | Btm | <59.365 | 3 | 2 | 46 | 44 | 92.5 |
≥59.365 | 47 | 48 | 4 | 6 | |||
胚乳部Seed endosperm | Btm | <89.78 | 4 | 3 | 49 | 46 | 94.0 |
≥89.78 | 46 | 47 | 1 | 4 | |||
Rtd | <30.405 | 5 | 5 | 48 | 43 | 90.5 | |
≥30.405 | 45 | 45 | 2 | 7 | |||
Vtd | <30.52 | 5 | 5 | 48 | 43 | 90.5 | |
≥30.52 | 45 | 45 | 2 | 7 |
表1 按单个特征划分阈值区间识别结果
Table 1 Identification results based on threshold interval according to a single feature
特征分类 Feature classification | 提取特征 Extract features | 分选区间 Sorting interval | 京麦9 Jingmai 9 | 京麦11 Jingmai 11 | 济麦22 Jimai 22 | 济麦44 Jimai 44 | 准确率 Accuracy/% |
---|---|---|---|---|---|---|---|
整粒Seeds | Btm | <84.215 | 3 | 4 | 49 | 47 | 94.5 |
≥84.215 | 47 | 46 | 1 | 3 | |||
Rtd | <35.09 | 2 | 4 | 49 | 43 | 93.0 | |
≥35.09 | 48 | 46 | 1 | 7 | |||
Gtd | <33.395 | 4 | 4 | 49 | 43 | 92.0 | |
≥33.395 | 46 | 46 | 1 | 7 | |||
Vtd | <35.22 | 2 | 4 | 49 | 43 | 93.0 | |
≥35.22 | 48 | 46 | 1 | 7 | |||
胚部Seed embryo | Btm | <59.365 | 3 | 2 | 46 | 44 | 92.5 |
≥59.365 | 47 | 48 | 4 | 6 | |||
胚乳部Seed endosperm | Btm | <89.78 | 4 | 3 | 49 | 46 | 94.0 |
≥89.78 | 46 | 47 | 1 | 4 | |||
Rtd | <30.405 | 5 | 5 | 48 | 43 | 90.5 | |
≥30.405 | 45 | 45 | 2 | 7 | |||
Vtd | <30.52 | 5 | 5 | 48 | 43 | 90.5 | |
≥30.52 | 45 | 45 | 2 | 7 |
二分类小麦品种 Binary classification of wheat varieties | 整粒透射光 Seeds transmitted light | 整粒反射光 Seeds reflected light | 整粒全光 Seeds full light | 分割透射光 Transmitted light after seeds segmentation | 分割反射光 Reflected light after seeds segmentation | 分割全光 Full light after seeds segmentation | 全部特征 All features |
---|---|---|---|---|---|---|---|
京麦9、济麦22 | 98.88 | 95.50 | 99.43 | 99.43 | 96.38 | 99.60 | 99.98 |
Jingmai 9、Jimai 22 | |||||||
京麦9、济麦44 | 98.90 | 95.55 | 99.10 | 99.45 | 97.63 | 99.53 | 99.90 |
Jingmai 9、Jimai 44 | |||||||
京麦11、济麦22 | 98.68 | 95.25 | 99.00 | 99.10 | 95.18 | 99.18 | 99.58 |
Jingmai 11、Jimai 22 | |||||||
京麦11、济麦44 | 98.43 | 95.08 | 99.10 | 99.33 | 94.53 | 99.60 | 99.68 |
Jingmai 11、Jimai 44 | |||||||
京麦组、济麦组 | 99.38 | 95.78 | 99.69 | 99.61 | 97.58 | 99.78 | 99.84 |
Jingmai Group、Jimai Group | |||||||
济麦22、济麦44 | 69.48 | 73.28 | 83.00 | 81.60 | 76.88 | 83.75 | 84.60 |
Jimai 22、Jimai 44 | |||||||
京麦9、京麦11 | 59.98 | 74.15 | 75.28 | 72.45 | 76.20 | 81.83 | 83.73 |
Jingmai 9、Jingmai 11 |
表2 PLS-DA种粒分类正确率
Table 2 Classification accuracy of PLS-DA seeds analysis %
二分类小麦品种 Binary classification of wheat varieties | 整粒透射光 Seeds transmitted light | 整粒反射光 Seeds reflected light | 整粒全光 Seeds full light | 分割透射光 Transmitted light after seeds segmentation | 分割反射光 Reflected light after seeds segmentation | 分割全光 Full light after seeds segmentation | 全部特征 All features |
---|---|---|---|---|---|---|---|
京麦9、济麦22 | 98.88 | 95.50 | 99.43 | 99.43 | 96.38 | 99.60 | 99.98 |
Jingmai 9、Jimai 22 | |||||||
京麦9、济麦44 | 98.90 | 95.55 | 99.10 | 99.45 | 97.63 | 99.53 | 99.90 |
Jingmai 9、Jimai 44 | |||||||
京麦11、济麦22 | 98.68 | 95.25 | 99.00 | 99.10 | 95.18 | 99.18 | 99.58 |
Jingmai 11、Jimai 22 | |||||||
京麦11、济麦44 | 98.43 | 95.08 | 99.10 | 99.33 | 94.53 | 99.60 | 99.68 |
Jingmai 11、Jimai 44 | |||||||
京麦组、济麦组 | 99.38 | 95.78 | 99.69 | 99.61 | 97.58 | 99.78 | 99.84 |
Jingmai Group、Jimai Group | |||||||
济麦22、济麦44 | 69.48 | 73.28 | 83.00 | 81.60 | 76.88 | 83.75 | 84.60 |
Jimai 22、Jimai 44 | |||||||
京麦9、京麦11 | 59.98 | 74.15 | 75.28 | 72.45 | 76.20 | 81.83 | 83.73 |
Jingmai 9、Jingmai 11 |
[1] | 何中虎, 庄巧生, 程顺和, 等. 中国小麦产业发展与科技进步[J]. 农学学报, 2018, 8(1): 99-106. |
HE Z H, ZHUANG Q S, CHENG S H, et al. Wheat production and technology improvement in China[J]. Journal of Agriculture, 2018, 8(1): 99-106. (in Chinese with English abstract) | |
[2] | 颜启传. 种子检验原理和技术[M]. 杭州: 浙江大学出版社, 2001. |
[3] | 王婷, 张进生, 戴钢, 等. 电泳检测小麦、玉米种子纯度存在的问题探析[J]. 河南农业科学, 2005, 34(12): 41-42. |
WANG T, ZHANG J S, DAI G, et al. Analysis on the problems existing in the detection of wheat and corn seed purity by electrophoresis[J]. Journal of Henan Agricultural Sciences, 2005, 34(12): 41-42. (in Chinese) | |
[4] | 刘燕德, 应义斌, 成芳. 机器视觉技术在种子纯度检验中的应用[J]. 农业机械学报, 2003, 34(5): 161-163. |
LIU Y D, YING Y B, CHENG F. Research of machine vision in purity inspection of seed[J]. Transactions of the Chinese Society of Agricultural Machinery, 2003, 34(5): 161-163. (in Chinese with English abstract) | |
[5] | 张谊寒. 杂种小麦种子纯度鉴定技术的研究[D]. 杨凌: 西北农林科技大学, 2005. |
ZHANG Y H. Study on purity identification of seeds in hybrid wheat[D]. Yangling: Northwest A & F University, 2005. (in Chinese with English abstract) | |
[6] | 王芳. 种子纯度鉴定方法及其评述[J]. 中国种业, 2008(10): 62-63. |
WANG F. Seed purity identification methods and their comments[J]. China Seed Industry, 2008(10): 62-63. (in Chinese) | |
[7] | 章志兴, 徐开盛, 陈俊涛, 等. 叶色标记技术在杂交水稻种子生产中的应用[J]. 种子科技, 2001, 19(1): 33-34. |
ZHANG Z X, XU K S, CHEN J T, et al. Application of leaf color marker technology in hybrid rice seed production[J]. Seed Science & Technology, 2001, 19(1): 33-34. (in Chinese) | |
[8] |
YANG X L, HONG H M, YOU Z H, et al. Spectral and image integrated analysis of hyperspectral data for waxy corn seed variety classification[J]. Sensors (Basel, Switzerland), 2015, 15(7): 15578-15594.
DOI URL |
[9] |
BAO Y D, MI C X, WU N, et al. Rapid classification of wheat grain varieties using hyperspectral imaging and chemometrics[J]. Applied Sciences, 2019, 9(19): 4119.
DOI URL |
[10] |
LIU S X, ZHANG H J, WANG Z, et al. Determination of maize seed purity based on multi-step clustering[J]. Applied Engineering in Agriculture, 2018, 34(4): 659-665.
DOI URL |
[11] |
HUANG M, TANG J Y, YANG B, et al. Classification of maize seeds of different years based on hyperspectral imaging and model updating[J]. Computers and Electronics in Agriculture, 2016, 122: 139-145.
DOI URL |
[12] |
ZHANG J, DAI L M, CHENG F. Corn seed variety classification based on hyperspectral reflectance imaging and deep convolutional neural network[J]. Journal of Food Measurement and Characterization, 2021, 15(1): 484-494.
DOI URL |
[13] | 宋韬, 曾德超. 基于人工神经网络的玉米籽粒形态识别方法的研究[J]. 农业工程学报, 1996, 12(1): 177-181. |
SONG T, ZENG D C. An investigation on morphological discrimination of corn kernels based on neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 1996, 12(1): 177-181. (in Chinese with English abstract) | |
[14] |
MAJUMDAR S, JAYAS D S. Classification of cereal grains using machine vision i: morphology models[J]. Transactions of the ASAE, 2000, 43(6): 1669-1675.
DOI URL |
[15] |
MAJUMDAR S, JAYAS D S. Classification of cereal grains using machine vision ii: color models[J]. Transactions of the ASAE, 2000, 43(6): 1677-1680.
DOI URL |
[16] |
MAJUMDAR S, JAYAS D S. Classification of cereal grains using machine vision iii: texture models[J]. Transactions of the ASAE, 2000, 43(6): 1681-1687.
DOI URL |
[17] | 刘双喜, 张宏建, 王金星, 等. 基于可见光波段的色彩概率聚类模型的玉米杂交种子识别[J]. 光谱学与光谱分析, 2018, 38(8): 2516-2523. |
LIU S X, ZHANG H J, WANG J X, et al. Hybrid seed recognition of maize based on probability clustering model using visible light color features[J]. Spectroscopy and Spectral Analysis, 2018, 38(8): 2516-2523. (in Chinese with English abstract) | |
[18] | 程洪, 李江涛, 史智兴, 等. 玉米籽粒的特征选择算法:基于支持向量机与遗传算法[J]. 农机化研究, 2009, 31(2):30-33. |
CHENG H, LI J T, SHI Z X, et al. Feature selection of corn seed based on genetic algorithm and support vector machine[J]. Journal of Agricultural Mechanization Research, 2009, 31(2):30-33. (in Chinese with English abstract) | |
[19] | 宁纪锋, 何东健, 杨蜀秦. 玉米籽粒的尖端和胚部的计算机视觉识别[J]. 农业工程学报, 2004, 20(3): 117-119. |
NING J F, HE D J, YANG S Q. Identification of tip cap and germ surface of corn kernel using computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(3): 117-119. (in Chinese with English abstract) | |
[20] | 韩仲志, 赵友刚, 杨锦忠. 基于籽粒RGB图像独立分量的玉米胚部特征检测[J]. 农业工程学报, 2010, 26(3): 222-226, 389. |
HAN Z Z, ZHAO Y G, YANG J Z. Detection of embryo based on independent components for kernel RGB images in maize[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(3): 222-226, 389. (in Chinese with English abstract) | |
[21] | 董高, 郭建, 王成, 等. 基于近红外高光谱成像及信息融合的小麦品种分类研究[J]. 光谱学与光谱分析, 2015, 35(12): 3369-3374. |
DONG G, GUO J, WANG C, et al. The classification of wheat varieties based on near infrared hyperspectral imaging and information fusion[J]. Spectroscopy and Spectral Analysis, 2015, 35(12): 3369-3374. (in Chinese with English abstract) | |
[22] | 王炳强, 程洪, 刘冲. 基于双边滤波的RSG玉米籽粒胚部提取研究[J]. 食品与机械, 2017, 33(2): 36-38. |
WANG B Q, CHENG H, LIU C. Study on extraction of corn kernel embryo by RSG base on bilateral filtering[J]. Food & Machinery, 2017, 33(2): 36-38. (in Chinese with English abstract) | |
[23] | 张俊雄, 武占元, 宋鹏, 等. 玉米单倍体种子胚部特征提取及动态识别方法[J]. 农业工程学报, 2013, 29(4): 199-203. |
ZHANG J X, WU Z Y, SONG P, et al. Embryo feature extraction and dynamic recognition method for maize haploid seeds[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(4): 199-203. (in Chinese with English abstract) | |
[24] |
LIU J, PAULSEN M R. Corn whiteness measurement and classification using machine vision[J]. Transactions of the ASAE, 2000, 43(3): 757-763.
DOI URL |
[25] | 史智兴, 程洪, 李江涛, 等. 图像处理识别玉米品种的特征参数研究[J]. 农业工程学报, 2008, 24(6): 193-195. |
SHI Z X, CHENG H, LI J T, et al. Characteristic parameters to identify varieties of corn seeds by image processing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(6): 193-195. (in Chinese with English abstract) | |
[26] | 程洪, 史智兴, 尹辉娟, 等. 基于机器视觉的多个玉米籽粒胚部特征检测[J]. 农业工程学报, 2013, 29(19): 145-151. |
CHENG H, SHI Z X, YIN H J, et al. Detection of multi-corn kernel embryos characteristic using machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19): 145-151. (in Chinese with English abstract) | |
[27] | 程洪, 史智兴, 冯娟, 等. 基于玉米胚部特征参数优化的玉米品种识别研究[J]. 中国粮油学报, 2014, 29(6): 22-26. |
CHENG H, SHI Z X, FENG J, et al. Corn embryo parameters optimization and varieties identification research[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(6): 22-26. (in Chinese with English abstract) | |
[28] | 杨嘉能, 李华, 田宸玮, 等. 基于自适应校正的动态直方图均衡算法[J]. 计算机工程与设计, 2021, 42(5): 1264-1270. |
YANG J N, LI H, TIAN C W, et al. Adaptive correction based dynamic histogram equalization[J]. Computer Engineering and Design, 2021, 42(5): 1264-1270. (in Chinese with English abstract) | |
[29] | 朱海洋, 徐根玖, 李元晨, 等. 基于图像分块的局部区域动态阈值选取方法[J]. 计算机与现代化, 2016(11): 53-57. |
ZHU H Y, XU G J, LI Y C, et al. Dynamic threshold selection of local region based on image partition[J]. Computer and Modernization, 2016(11): 53-57. (in Chinese with English abstract) | |
[30] | 阿基业. 代谢组学数据处理方法: 主成分分析[J]. 中国临床药理学与治疗学, 2010, 15(5): 481-489. |
AA J Y. Analysis of metabolomic data: principal component analysis[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2010, 15(5): 481-489. (in Chinese with English abstract) |
[1] | 蔡瑶, 缪宇轩, 吴浩, 王丹. 高CO2浓度下冬小麦的高光谱特征及其与叶面积指数和SPAD值的反演[J]. 浙江农业学报, 2022, 34(3): 582-589. |
[2] | 王掌军, 姚明明, 余慧霞, 王彦青, 李清峰, 刘凤楼, 刘彩霞, 张双喜, 张晓岗, 刘生祥. 宁春4号×河东乌麦F2∶5家系遗传图谱构建与籽粒蛋白质性状QTL分析[J]. 浙江农业学报, 2021, 33(8): 1367-1378. |
[3] | 王玲玲, 吴文革, 李瑞, 胡健, 闫素辉, 邵庆勤, 许峰, 张从宇, 周永进, 李文阳. 施氮量对弱筋小麦籽粒品质与氮素利用的影响[J]. 浙江农业学报, 2021, 33(5): 777-784. |
[4] | 姚钊, 王重阳, 崔静. 小麦不同穗位籽粒灌浆特性的影响[J]. 浙江农业学报, 2021, 33(4): 576-585. |
[5] | 赵珂, 李秋荣, 侯璐, 白耀博, 蒋礼玲, 魏有海, 郭青云. 2份春小麦种质资源成株期抗条锈病基因遗传分析[J]. 浙江农业学报, 2021, 33(4): 595-601. |
[6] | 韩晓蕾, 高仕祺, 张帆, 羊健, 刘芃, 姜鸿明, 李林志. 酵母双杂交筛选与小麦黄花叶病毒P2互作的寄主因子[J]. 浙江农业学报, 2021, 33(3): 497-505. |
[7] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
[8] | 王潭刚, 孙婷, 王冀川, 李慧琴, 高振, 石元强. 播期和密度对滴灌冬小麦群体结构与抗倒特性的影响[J]. 浙江农业学报, 2021, 33(2): 193-202. |
[9] | 王骏, 吴小保, 宋佳, 邓倩倩, 曾广, 任明见, 叶茂. 外源钙浸种对小麦防御酶和麦二叉蚜体内解毒酶活性的影响[J]. 浙江农业学报, 2021, 33(12): 2339-2347. |
[10] | 王士臻, 王教瑜, 王艳丽, 孙国仓. 麦瘟病与小麦抗麦瘟基因研究进展[J]. 浙江农业学报, 2021, 33(11): 2205-2212. |
[11] | 张统帅, 闫丽娟, 李广, 陈国鹏, 罗永忠. 免耕和秸秆覆盖对旱作区土壤氮素、水分和春小麦产量的影响[J]. 浙江农业学报, 2020, 32(8): 1329-1341. |
[12] | 吴承杰, 任兰天, 郝冰, 邵庆勤, 王泓, 陈峰, 代高峰, 梅世远, 张从军. 秸秆堆肥部分替代化肥配施硝化抑制剂对冬小麦温室气体排放的影响[J]. 浙江农业学报, 2020, 32(7): 1233-1240. |
[13] | 韩立杰, 董伟欣, 张月辰. 不同水肥处理对小麦冠层结构、产量和籽粒品质的影响[J]. 浙江农业学报, 2020, 32(6): 953-962. |
[14] | 王峰, 叶静, 高敬文, 王强, 俞巧钢, 何新华, 马军伟. 外源增钾缓解铵胁迫下小麦根系受抑[J]. 浙江农业学报, 2020, 32(11): 1923-1933. |
[15] | 徐莉, 陈小洁, 曹静婷, 刘楚楚, 丁婷, 江腾. 小麦赤霉病生防菌DZSG23的抗病机制[J]. 浙江农业学报, 2020, 32(11): 2001-2008. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 810
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 573
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||