浙江农业学报 ›› 2021, Vol. 33 ›› Issue (3): 497-505.DOI: 10.3969/j.issn.1004-1524.2021.03.15
韩晓蕾1,2,3, 高仕祺1,2,3, 张帆3, 羊健3, 刘芃3, 姜鸿明1, 李林志1,*()
收稿日期:
2020-10-27
出版日期:
2021-04-02
发布日期:
2021-03-25
通讯作者:
李林志
作者简介:
, 李林志,E-mail: linzhili2002@163.com基金资助:
HAN Xiaolei1,2,3, GAO Shiqi1,2,3, ZHANG Fan3, YANG Jian3, LIU Peng3, JIANG Hongming1, LI Linzhi1,*()
Received:
2020-10-27
Online:
2021-04-02
Published:
2021-03-25
Contact:
LI Linzhi
摘要:
小麦黄花叶病毒(wheat yellow mosaic virus,WYMV)隶属马铃薯Y病毒科(Potyviridae),大麦黄花叶病毒属(Bymovirus)。该病毒基因组是由两条正义单链RNA1和RNA2构成,共编码10个蛋白,其编码的P2在病毒的复制过程中发挥重要功能。文章构建了小麦cDNA酵母文库,通过共转试验共筛选获得若干个候选互作寄主因子,包括水杨酸信号通路因子、E3泛素化连接酶、防御反应、氧化还原酶活性、光系统II组件等18种蛋白,研究P2与寄主因子的互作。进一步试验证实,其中的TaTIFY 10A、Ta14-3-3与WYMV-P2存在互作关系。结果表明,WYMV-P2与小麦的E3泛素化类转录因子、水杨酸信号转录因子、植物光系统的稳定组件及叶绿体的形成关键因子等可能存在互作关系,P2可能参与了寄主多种信号途径,为明确WYMV与寄主的互作机制提供了研究基础。
中图分类号:
韩晓蕾, 高仕祺, 张帆, 羊健, 刘芃, 姜鸿明, 李林志. 酵母双杂交筛选与小麦黄花叶病毒P2互作的寄主因子[J]. 浙江农业学报, 2021, 33(3): 497-505.
HAN Xiaolei, GAO Shiqi, ZHANG Fan, YANG Jian, LIU Peng, JIANG Hongming, LI Linzhi. Screening of host factors interacting with wheat yellow mosaic virus P2 by yeast two-hybrid system[J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 497-505.
编号 Number | 引物名称 Primers name | 引物序列 Primers sequence(5'-3') | 酶切位点 RE site |
---|---|---|---|
1 | pGADT7 forward primer | TAATACGACTCACTATAGGGCGA | SamⅠ |
pGADT7 reverse primer | CTGTGCATCGTGCACCATCT | BamHⅠ | |
2 | pGBKT7 forward primer | GTAATACGACTCACTATAGGGCGA | NotⅠ |
pGBKT7 reverse primer | ATTCTCAGTGAAATTTTAAACATA | PstⅠ | |
3 | Ta14-3-3 forward primer | TCCCCCGGGATGGCCTTCTTCTCCCACCAC | SamⅠ |
Ta14-3-3 reverse primer | CGCGGATCCTCACATATATATCTCCATGCC | BamHⅠ | |
4 | WYMV-P2 forward primer | AAAGCGGCCGCATGTCAGCTGAGGAAACAGGT | NotⅠ |
WYMV-P2 reverse primer | GCACTGCAGATGGCCCGGCCTCCTGAGGAA | PstⅠ | |
5 | TaTIFY 10A forward primer | TCCCCCGGGATGGCGGCTTCCGCGAGGCAG | SamⅠ |
TaTIFY 10A reverse primer | CGCGGATCCTTATTGGTTTGGCTTCAGGGC | BamHⅠ |
表1 酵母重组质粒构建引物
Table 1 Primers for construction of yeast recombinant plasmid
编号 Number | 引物名称 Primers name | 引物序列 Primers sequence(5'-3') | 酶切位点 RE site |
---|---|---|---|
1 | pGADT7 forward primer | TAATACGACTCACTATAGGGCGA | SamⅠ |
pGADT7 reverse primer | CTGTGCATCGTGCACCATCT | BamHⅠ | |
2 | pGBKT7 forward primer | GTAATACGACTCACTATAGGGCGA | NotⅠ |
pGBKT7 reverse primer | ATTCTCAGTGAAATTTTAAACATA | PstⅠ | |
3 | Ta14-3-3 forward primer | TCCCCCGGGATGGCCTTCTTCTCCCACCAC | SamⅠ |
Ta14-3-3 reverse primer | CGCGGATCCTCACATATATATCTCCATGCC | BamHⅠ | |
4 | WYMV-P2 forward primer | AAAGCGGCCGCATGTCAGCTGAGGAAACAGGT | NotⅠ |
WYMV-P2 reverse primer | GCACTGCAGATGGCCCGGCCTCCTGAGGAA | PstⅠ | |
5 | TaTIFY 10A forward primer | TCCCCCGGGATGGCGGCTTCCGCGAGGCAG | SamⅠ |
TaTIFY 10A reverse primer | CGCGGATCCTTATTGGTTTGGCTTCAGGGC | BamHⅠ |
图2 酵母重组质粒双酶切电泳图 M,DL8000;泳道1~2,NdeⅠ/PstⅠ双酶切pGBKT7-P2;泳道3~4,NdeⅠ/PstⅠ双酶切pGBKT7。
Fig.2 Double digestion patterns of recombinant plasmid M, DL8000; Lane 1-2, pGBKT7-P2 enzyme digestion by NdeⅠ/PstⅠ; Lane 3-4, pGBKT7 enzyme digestion by NdeⅠ/PstⅠ.
图3 pGBKT7-P2、pGBKT7载体自激活验证及毒性验证 A,模式图,pGADT7-RECT与pGBKT7-Lam互作为阴性对照,pGADT7-RECT与pGBKT7-53互作为阳性对照,pGBKT7-P2与pGBKT7互作为自激活验证;B,SD/-Trp/-Leu培养基;C,SD/-Trp/-Leu/-Ade/-His+X-α-Gal培养基。
Fig.3 Autoactivation and toxicity testing of pGBKT7-P2 or pGBKT7 A, Mode pattern, pGADT7-RECT interact with pGBKT7-Lam served as negative control, pGADT7-RECT interact with pGBKT7-53 served as positive control, pGBKT7-P2 interact with pGBKT7 served as auto-activation tests; B, SD/-Trp/-Leu medium; C, SD/-Trp/-Leu/-Ade/-His+X-α-Gal medium.
编号 Number | 序列名 Sequence ID | 基因名 Gene name | 功能 Function |
---|---|---|---|
1 | TraesCS2A02G407700.1 | TapTOM75 | Aquaporin PIP-type pTOM75 |
2 | TraesCS5A02G322500.1 | TaCB36 | Chlorophyll a-b binding protein 36 |
3 | TraesCS6A02G245100.1 | TaRS31 | Serine/arginine-rich splicing factor RS31-like |
4 | TraesCS2D02G248400.2 | TaOEE1 | Oxygen-evolving enhancer protein 1 |
5 | TraesCS5A02G164600.1 | TaLIP | Light-induced protein |
6 | TraesCS3D02G055500.1 | Ta14-3-3 | 14-3-3-like protein C |
7 | TraesCS2B02G195600.1 | TaTIFY 10A | Protein TIFY 10A-like |
8 | TraesCS3D02G247300.2 | TaID31 | Protein IQ-DOMAIN 31-like |
9 | TraesCS7A02G235200.3 | TaAGWD | Alpha-glucan water dikinase |
10 | TraesCS7D02G276300.1 | TaCBP21 | Chlorophyll a-b binding protein 21 |
11 | TraesCS3D02G232300.1 | TaUBA2c | UBP1-associated protein 2C-like |
12 | TraesCS2B02G126500.1 | TaRL19-3 | 60S ribosomal protein L19-3-like |
13 | TraesCS3D02G079600.2 | TaBAG6 | Large proline-rich protein BAG6 |
14 | TraesCS4A02G159700.2 | TaCGS1 | Cystathionine gamma-synthase 1 |
15 | TraesCS2D02G253900.1 | TaPSP | Photosystem II 10 kDa polypeptide |
16 | TraesCS3A02G309800.1 | TaCNR8 | Cell number regulator 8-like |
17 | TraesCS5D02G169600.2 | TaRBCSC | Ribulose bisphosphate carboxylase small chain |
18 | TraesCS4D02G215600.2 | TaBOI | BOI-related E3 ubiquitin-protein ligase 3 |
表2 P2-pGBKT7为诱饵筛选到的互作基因信息
Table 2 The information of the genes interaction with P2-pGBKT7 screening by yeast two-hybrid
编号 Number | 序列名 Sequence ID | 基因名 Gene name | 功能 Function |
---|---|---|---|
1 | TraesCS2A02G407700.1 | TapTOM75 | Aquaporin PIP-type pTOM75 |
2 | TraesCS5A02G322500.1 | TaCB36 | Chlorophyll a-b binding protein 36 |
3 | TraesCS6A02G245100.1 | TaRS31 | Serine/arginine-rich splicing factor RS31-like |
4 | TraesCS2D02G248400.2 | TaOEE1 | Oxygen-evolving enhancer protein 1 |
5 | TraesCS5A02G164600.1 | TaLIP | Light-induced protein |
6 | TraesCS3D02G055500.1 | Ta14-3-3 | 14-3-3-like protein C |
7 | TraesCS2B02G195600.1 | TaTIFY 10A | Protein TIFY 10A-like |
8 | TraesCS3D02G247300.2 | TaID31 | Protein IQ-DOMAIN 31-like |
9 | TraesCS7A02G235200.3 | TaAGWD | Alpha-glucan water dikinase |
10 | TraesCS7D02G276300.1 | TaCBP21 | Chlorophyll a-b binding protein 21 |
11 | TraesCS3D02G232300.1 | TaUBA2c | UBP1-associated protein 2C-like |
12 | TraesCS2B02G126500.1 | TaRL19-3 | 60S ribosomal protein L19-3-like |
13 | TraesCS3D02G079600.2 | TaBAG6 | Large proline-rich protein BAG6 |
14 | TraesCS4A02G159700.2 | TaCGS1 | Cystathionine gamma-synthase 1 |
15 | TraesCS2D02G253900.1 | TaPSP | Photosystem II 10 kDa polypeptide |
16 | TraesCS3A02G309800.1 | TaCNR8 | Cell number regulator 8-like |
17 | TraesCS5D02G169600.2 | TaRBCSC | Ribulose bisphosphate carboxylase small chain |
18 | TraesCS4D02G215600.2 | TaBOI | BOI-related E3 ubiquitin-protein ligase 3 |
图4 利用酵母双杂交检测pGBKT7-P2与TaTIFY10A-pGADT7、Ta14-3-3-pGADT7相互作用
Fig.4 Interaction analysis among pGBKT7-P2 and TaTIFY10A-pGADT7 or Ta14-3-3-pGADT7 in the yeast two-hybrid system
图5 WYMV-P2与TaTIFY 10A-pGADT7、Ta14-3-3-pGADT7在酵母互作验证 pGADT7-RECT与pGBKT7-Lam互作为阴性对照;pGADT7-RECT与pGBKT7-53互作为阳性对照;A,SD/-Trp/-Le培养基和SD/-Trp/-Leu/-Ade/-His培养基;B,SD/-Trp/-Leu/-Ade/-His+X-α-Gal培养基。
Fig.5 Interaction of WYMV-P2 with and TaTIFY10A-pGADT7/Ta14-3-3-pGADT7 in a yeast two-hybrid analysis pGADT7-RECT interact with pGBKT7-Lam served as negative control; pGADT7-RECT interact with pGBKT7-53 served as positive control; A, SD/-Trp/-Leu medium and SD/-Trp/-Leu/-Ade/-His medium; B, SD/-Trp/-Leu/-Ade/-His+X-α-Gal medium.
[1] | 于嘉林, 晏立英, 苏宁 , 等. 小麦黄花叶病毒基因组核苷酸序列分析[J]. 中国科学C辑: 生命科学, 1999,29(6):639-644. |
YU J L, YAN L Y, SU N , et al. Genomic nucleotide sequence analysis of Wheat Yellow Mosaic Virus[J]. Science China(Series C), 1999,29(6):639-644.(in Chinese) | |
[2] |
ABBINK T E M, PEART J R, MOS T N M , et al. Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants[J]. Virology, 2002,295(2):307-319.
DOI URL PMID |
[3] |
DUNOYER P, THOMAS C, HARRISON S , et al. A cysteine-rich plant protein potentiates Potyvirus movement through an interaction with the virus genome-linked protein VPg[J]. Journal of Virology, 2004,78(5):2301-2309.
DOI URL PMID |
[4] |
GOODFELLOW I, CHAUDHRY Y, GIOLDASI I , et al. Calicivirus translation initiation requires an interaction between VPg and eIF4E[J]. EMBO Reports, 2005,6(10):968-972.
DOI URL PMID |
[5] |
PAUL A V, RIEDER E, KIM D W , et al. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg[J]. Journal of Virology. 2000; 74(22):10359-10370.
DOI URL PMID |
[6] |
KASHIWAZAKI S, MINOBE Y, OMURA T , et al. Nucleotide sequence of barley yellow mosaic virus RNA 1: a close evolutionary relationship with potyviruses[J]. The Journal of General Virology, 1990,71(Pt 12):2781-2790.
DOI URL |
[7] |
CHEN J , SOHN, CHEN, et al. Molecular comparisons amongst wheat Bymovirus isolates from Asia, North America and Europe[J]. Plant Pathology, 1999,48(5):642-647.
DOI URL |
[8] |
YU J L, YAN L Y, SU N , et al. Analysis of nucleotide sequence of wheat yellow mosaic virus genomic RNAs[J]. Science in China Series C: Life Sciences, 1999,42(5):554-560.
DOI URL PMID |
[9] |
NAMBA S, KASHIWAZAKI S, LU X , et al. Complete nucleotide sequence of wheat yellow mosaic Bymovirus genomic RNAs[J]. Archives of Virology, 1998,143(4):631-643.
DOI URL PMID |
[10] | 陈炯, 陈剑平 . 大麦黄花叶病毒属成员UTR系统进化树分析及编码蛋白跨膜结构推测[J]. 中国病毒学, 2002,17(4):49-54. |
CHEN J, CHEN J P . Phylogenetic tree analysis of UTR and transmembrane structure prediction of proteins of genus Bymovirus[J]. Virologica Sinica, 2002,17(4):49-54.(in Chinese with English abstract) | |
[11] |
YOU Y, SHIRAKO Y . Bymovirus reverse genetics: requirements for RNA2-encoded proteins in systemic infection[J]. Molecular Plant Pathology, 2010,11(3):383-394.
DOI URL PMID |
[12] |
LI H G, SHIRAKO Y . Association of VPg and eIF4E in the host tropism at the cellular level of Barley yellow mosaic virus and Wheat yellow mosaic virus in the genus Bymovirus[J]. Virology, 2015,476:159-167.
DOI URL PMID |
[13] |
GARCÍA J A, PALLÁS V . Viral factors involved in plant pathogenesis[J]. Current Opinion in Virology, 2015,11:21-30.
DOI URL PMID |
[14] |
COSTA M, NOBRE M S, BECKER J D , et al. Expression-based and co-localization detection of Arabinogalactan protein 6 and Arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes[J]. BMC Plant Biology, 2013,13:7.
DOI URL PMID |
[15] |
SINGH R, LEE M O, LEE J E , et al. Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system[J]. Plant Physiology, 2012,160(1):477-487.
DOI URL |
[16] |
ZHAO J P, LIU Q, ZHANG H L , et al. The rubisco small subunit is involved in Tobamovirus movement and Tm-22-mediated extreme resistance[J]. Plant Physiology, 2013,161(1):374-383.
DOI URL |
[17] |
KONG L F, WU J X, LU L N , et al. Interaction between rice stripe virus disease-specific protein and host PsbP enhances virus symptoms[J]. Molecular Plant, 2014,7(4):691-708.
DOI URL |
[18] |
SUN L Y, ANDIKA I B, SHEN J F , et al. The P2 of Wheat yellow mosaic virus rearranges the endoplasmic Reticulum and recruits other viral proteins into replication-associated inclusion bodies[J]. Molecular Plant Pathology, 2014,15(5):466-478.
DOI URL |
[19] | 徐进, 李帅, 施季森 . 鹅掌楸属植物总RNA提取方法的比较与分析[J]. 福建林学院学报, 2008,28(2):156-159. |
XU J, LI S, SHI J S . Comparison and analysis of the methods of RNA isolation for Liriodendron genus[J]. Journal of Fujian College of Forestry, 2008,28(2):156-159.(in Chinese with English abstract) | |
[20] |
GUTIERREZ C, RAMIREZ-PARRA E, MAR CASTELLANO M , et al. Geminivirus DNA replication and cell cycle interactions[J]. Veterinary Microbiology, 2004,98(2):111-119.
DOI URL PMID |
[21] |
LI Y Z, CUI H G, CUI X Y , et al. The altered photosynthetic machinery during compatible virus infection[J]. Current Opinion in Virology, 2016,17:19-24.
DOI URL PMID |
[22] |
ORUETXEBARRIA I, KVARNHEDEN A, VALKONEN J P T. Analysis of putative interactions between potyviral replication proteins and plant retinoblastoma proteins[J]. Virus Genes, 2002,24(1):65-75.
DOI URL |
[23] |
KÜHNE T, SHI N N, PROESELER G , et al. The ability of a Bymovirus to overcome the rym4-mediated resistance in barley correlates with a Codon change in the VPg coding region on RNA1[J]. The Journal of General Virology, 2003,84(Pt 10):2853-2859.
DOI URL PMID |
[24] |
BRACHMANN R K, BOEKE J D . Tag games in yeast: the two-hybrid system and beyond[J]. Current Opinion in Biotechnology, 1997,8(5):561-568.
DOI URL PMID |
[25] |
KONG L J . A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants[J]. The EMBO Journal, 2000,19(13):3485-3495.
DOI URL PMID |
[26] | 戚文平, 刘丽娟, 李宇 , 等. 用酵母双杂交筛选与小麦黄花叶病毒CP互作的寄主因子[J]. 麦类作物学报, 2016,36(4):415-419. |
QI W P, LIU L J, LI Y , et al. Screening of host factors interacting with wheat yellow mosaic virus CP by yeast two-hybrid system[J]. Journal of Triticeae Crops, 2016,36(4):415-419.(in Chinese with English abstract) | |
[27] |
NA J K, KIM J K, KIM D Y , et al. Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis[J]. Journal of Experimental Botany, 2015,66(13):4023-4033.
DOI URL PMID |
[28] |
LIU Q, ZHANG S H, LIU B . 14-3-3 proteins: Macro-regulators with great potential for improving abiotic stress tolerance in plants[J]. Biochemical and Biophysical Research Communications, 2016,477(1):9-13.
DOI URL PMID |
[29] |
MENG L, ZHANG T, GENG S S , et al. Comparative proteomics and metabolomics of JAZ7-mediated drought tolerance in Arabidopsis[J]. Journal of Proteomics, 2019,196:81-91.
DOI URL PMID |
[30] | 胡婷丽, 李魏, 刘雄伦 , 等. 泛素化在植物抗病中的作用[J]. 微生物学通报, 2014,41(6):1175-1179. |
HU T L, LI W, LIU X L , et al. The role of ubiquitination in plant disease resistance[J]. Microbiology China, 2014,41(6):1175-1179.(in Chinese with English abstract) | |
[31] |
ZENG L R, VEGA-SÁNCHEZ M E, ZHU T, et al. Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions[J]. Cell Research, 2006,16(5):413-426.
DOI URL PMID |
[32] |
WANG Y S, PI L Y, CHEN X H , et al. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance[J]. The Plant Cell, 2006,18(12):3635-3646.
DOI URL PMID |
[1] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
[2] | 王潭刚, 孙婷, 王冀川, 李慧琴, 高振, 石元强. 播期和密度对滴灌冬小麦群体结构与抗倒特性的影响[J]. 浙江农业学报, 2021, 33(2): 193-202. |
[3] | 张统帅, 闫丽娟, 李广, 陈国鹏, 罗永忠. 免耕和秸秆覆盖对旱作区土壤氮素、水分和春小麦产量的影响[J]. 浙江农业学报, 2020, 32(8): 1329-1341. |
[4] | 倪征, 陈柳, 华炯钢, 叶伟成, 云涛, 朱寅初, 张存. 浙江省地方鸡种禽白血病毒抗原检测与部分分离株GP85基因序列分析[J]. 浙江农业学报, 2020, 32(8): 1357-1362. |
[5] | 吴承杰, 任兰天, 郝冰, 邵庆勤, 王泓, 陈峰, 代高峰, 梅世远, 张从军. 秸秆堆肥部分替代化肥配施硝化抑制剂对冬小麦温室气体排放的影响[J]. 浙江农业学报, 2020, 32(7): 1233-1240. |
[6] | 韩立杰, 董伟欣, 张月辰. 不同水肥处理对小麦冠层结构、产量和籽粒品质的影响[J]. 浙江农业学报, 2020, 32(6): 953-962. |
[7] | 王峰, 叶静, 高敬文, 王强, 俞巧钢, 何新华, 马军伟. 外源增钾缓解铵胁迫下小麦根系受抑[J]. 浙江农业学报, 2020, 32(11): 1923-1933. |
[8] | 徐莉, 陈小洁, 曹静婷, 刘楚楚, 丁婷, 江腾. 小麦赤霉病生防菌DZSG23的抗病机制[J]. 浙江农业学报, 2020, 32(11): 2001-2008. |
[9] | 边建文, 崔岩, 杨宋琪, 罗光宏, 孟宪刚. 衣藻和固氮鱼腥藻对盐胁迫下小麦幼苗生长的影响[J]. 浙江农业学报, 2020, 32(10): 1748-1756. |
[10] | 王掌军, 刘妍, 张双喜, 刘凤楼, 李清峰, 张晓岗, 刘生祥, 贾彪. 宁春4号与河东乌麦杂交F2代抗病性及分子标记鉴定[J]. 浙江农业学报, 2019, 31(5): 677-687. |
[11] | 陈小洁, 王其, 张欣悦, 丁婷. 杜仲内生细菌拮抗小麦赤霉病菌研究[J]. 浙江农业学报, 2019, 31(5): 766-776. |
[12] | 张岩, 亓玉华, 鲁燕华, 杨乾坤, 何雨娟, 李俊敏, 陈剑平. 小麦黄花叶病毒P3蛋白致病功能域的鉴定和分析[J]. 浙江农业学报, 2019, 31(5): 777-783. |
[13] | 张雅莉, 王林生. 普通小麦大赖草易位系T3AS·3AL-7Lr#1S的分子细胞遗传学鉴定[J]. 浙江农业学报, 2019, 31(4): 519-524. |
[14] | 闫建伟, 苏小东, 赵源, 刘进平. 基于图像特征的小麦胚芽鞘识别[J]. 浙江农业学报, 2019, 31(2): 326-332. |
[15] | 王浩, 唐勇伟, 董振振, 王茂励, 赵景波. 基于小区育种路径自对齐的小麦小区播种机改进[J]. 浙江农业学报, 2019, 31(10): 1709-1716. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1910
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1156
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||