[1] PIWPUAN N, ZHAI X, BRIX H.Nitrogen nutrition of Cyperus laevigatus and Phormium tenax: effects of ammonium versus nitrate on growth, nitrate reductase activity and N uptake kinetics[J]. Aquatic Botany, 2013, 106: 42-51. [2] XU G H, FAN X R, MILLER A J.Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63(1): 153-182. [3] BRITTO D T, KRONZUCKER H J.Ecological significance and complexity of N-source preference in plants[J]. Annals of Botany, 2013, 112(6): 957-963. [4] BRITTO D T, KRONZUCKER H J. toxicity in higher plants: a critical review[J]. Journal of Plant Physiology, 2002, 159(6): 567-584. [5] LI B H, LI G J, KRONZUCKER H J, et al.Ammonium stress in Arabidopsis: signaling, genetic loci, and physiological targets[J]. Trends in Plant Science, 2014, 19(2): 107-114. [6] WANG F, GAO J, SHI S, et al.Impaired electron transfer accounts for the photosynthesis inhibition in wheat seedlings (Triticum aestivum L.) subjected to ammonium stress[J]. Physiologia Plantarum, 2019, 167(2): 159-172. [7] ARIZ I, ASENSIO A C, ZAMARREÑO A M, et al. Changes in the C/N balance caused by increasing external ammonium concentrations are driven by carbon and energy availabilities during ammonium nutrition in pea plants: the key roles of asparagine synthetase and anaplerotic enzymes[J]. Physiologia Plantarum, 2013, 148(4): 522-537. [8] WANG F, GAO J W, LIU Y, et al.Higher ammonium transamination capacity can alleviate glutamate inhibition on winter wheat (Triticum aestivum L.) root growth under high ammonium stress[J]. PLoS One, 2016, 11(8): e0160997. [9] IKEDA M, KUSANO T, KOGA N.Carbon skeletons for amide synthesis during ammonium nutrition in tomato and wheat roots[J]. Soil Science and Plant Nutrition, 2004, 50(1): 141-147. [10] CHEN G, GUO S W, KRONZUCKER H J, et al.Nitrogen use efficiency (NUE) in rice links to toxicity and futile cycling in roots[J]. Plant and Soil, 2013, 369(1/2): 351-363. [11] TAKEI K, SAKAKIBARA H, TANIGUCHI M, et al.Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf implication of cytokinin species that induces gene expression of maize response regulator[J]. Plant and Cell Physiology, 2001, 42(1): 85-93. [12] SZCZERBA M W, BRITTO D T, BALKOS K D, et al.Alleviation of rapid, futile ammonium cycling at the plasma membrane by potassium reveals K+-sensitive and-insensitive components of transport[J]. Journal of Experimental Botany, 2008, 59(2): 303-313. [13] YOUSRA M, AKHTAR J, SAQIB Z A, et al.Effect of potassium application on ammonium nutrition in maize (Zea mays L.) under salt stress[J]. Pakistan Journal of Agricultural Sciences, 2013, 50(1): 43-48. [14] SPALDING E P, HIRSCH R E, LEWIS D R, et al.Potassium uptake supporting plant growth in the absence of AKT1 channel activity: inhibition by ammonium and stimulation by sodium[J]. The Journal of General Physiology, 1999, 113(6): 909-918. [15] DREYER I, GOMEZ-PORRAS J L, RIEDELSBERGER J. The potassium battery: a mobile energy source for transport processes in plant vascular tissues[J]. New Phytologist, 2017, 216(4): 1049-1053. [16] TRÄNKNER M, TAVAKOL E, JÁKLI B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection[J]. Physiologia Plantarum, 2018, 163(3): 414-431. [17] BALKOS K D, BRITTO D T, KRONZUCKER H J.Optimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR-72)[J]. Plant, Cell & Environment, 2010, 33(1): 23-34. [18] KRUGLOV S V, SUSLINA L G, ANISIMOV V S, et al., Mechanism of the effect of K+ and ions on 137Cs accumulation by two-week-old barley plants from soddy-podzolic soils[J]. Pochvovedenie, 2005(10): 1222-1231. [19] SHIEH R C, LEE Y L.Ammonium ions induce inactivation of Kir2.1 potassium channels expressed in Xenopus oocytes[J]. The Journal of Physiology, 2001, 535(2): 359-370. [20] CHENG C L, ACEDO G N, CRISTINSIN M, et al.Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(5): 1861-1864. [21] 於新建. 植物生理学实验手册[M]. 上海: 上海科学技术出版社, 1985. [22] FUERTES-MENDIZABAL T, GONZALEZ A, MA APARICIO-TEJO J, et al. High irradiance improves ammonium tolerance in wheat plants by increasing N assimilation[J]. Journal of Plant Physiology, 2013, 170: 758-771. [23] LAUTER F R, NINNEMANN O, BUCHER M, et al.Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15): 8139-8144. [24] SILBER A, BRUNER M, KENIG E, et al.High irrigation frequency and transient concentration: effects on soilless-grown bell pepper[J]. The Journal of Horticultural Science and Biotechnology, 2005, 80(2): 233-239. [25] 李青, 李保海, 施卫明. 高铵胁迫对拟南芥幼苗侧根生长的影响及机制探索[J]. 土壤, 2011, 43(3): 374-381. LI Q, LI B H, SHI W M.Response and mechanism of Arabidopsis lateral root to excessive ammonium stress[J]. 2011, 43(3): 374-381.(in Chinese with English abstract) [26] 李保海, 施卫明. 拟南芥幼苗对高响应的特征及不同生态型间的差异[J]. 土壤学报, 2007, 44(3): 508-515. LI B H, SHI W M.Effects of elevated on Arabidopsis seedlings difference in accessions[J]. Acta Pedologica Sinica, 2007, 44(3): 508-515.(in Chinese with English abstract) [27] LI Q, LI B H, KRONZUCKER H J, et al.Root growth inhibition by in Arabidopsis is mediated by the root tip and is linked to efflux and GMPase activity[J]. Plant, Cell & Environment, 2010, 33(9): 1529-1542. [28] SETIÉN I, FUERTES-MENDIZABAL T, GONZÁLEZ A, et al. High irradiance improves ammonium tolerance in wheat plants by increasing N assimilation[J]. Journal of Plant Physiology, 2013, 170(8): 758-771. [29] SZCZERBA M W, BRITTO D T, ALI S A, et al.-stimulated and-inhibited components of K+ transport in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2008, 59(12): 3415-3423. [30] MAATHUIS F J M, SANDERS D. Contrasting roles in ion transport of two K+-channel types in root cells of Arabidopsis thaliana[J]. Planta, 1995, 197(3): 456-464. [31] EL OMARI R, RUEDA-LÓPEZ M, AVILA C, et al. Ammonium tolerance and the regulation of two cytosolic glutamine synthetases in the roots of Sorghum[J]. Functional Plant Biology, 2010, 37(1): 55. [32] BERNARD S M, MØLLER A L B, DIONISIO G, et al. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.)[J]. Plant Molecular Biology, 2008, 67(1/2): 89-105. [33] MARTÍNEZ-ANDúJAR C, GHANEM M E, ALBACETE A, et al. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic -dependent asparagine synthetase[J]. Journal of Plant Physiology, 2013, 170(7): 676-687. [34] LI B H, SHI W M, SU Y H.The differing responses of two Arabidopsis ecotypes to ammonium are modulated by the photoperiod regime[J]. Acta Physiologiae Plantarum, 2011, 33(2): 325-334. [35] BECKER T W, CARRAYOL E, HIREL B.Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport[J]. Planta, 2000, 211(6): 800-806. [36] GUO S, ZHOU Y, SHEN Q, et al.Effect of ammonium and nitrate nutrition on some physiological processes in higher plants-growth, photosynthesis, photorespiration, and water relations[J]. Plant Biology, 2007, 9(1): 21-29. [37] ERDEI L, HORVÁTH F, TARI I, et al. Differences in photorespiration, glutamine synthetase and polyamines between fragmented and closed stands of Phragmites australis[J]. Aquatic Botany, 2001, 69(2/3/4): 165-176. [38] PELTIER G, THIBAULT P.Ammonia exchange and photorespiration in Chlamydomonas[J]. Plant Physiology, 1983, 71(4): 888-892. [39] OLIVEIRA I C, BREARS T, KNIGHT T J, et al.Overexpression of cytosolic glutamine synthetase. relation to nitrogen, light, and photorespiration[J]. Plant Physiology, 2002, 129(3): 1170-1180. [40] BLOOM A J, SMART D R, NGUYEN D T, et al.Nitrogen assimilation and growth of wheat under elevated carbon dioxide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(3): 1730-1735. [41] MAGALHÃES J R, HUBER D M, TSAI C Y. Evidence of increased 15N-ammonium assimilation in tomato plants with exogenous α-ketoglutarate[J]. Plant Science, 1992, 85(2): 135-141. [42] CAO S F, YANG Z F, ZHENG Y H.Sugar metabolism in relation to chilling tolerance of loquat fruit[J]. Food Chemistry, 2013, 136(1): 139-143. [43] DAS P K, SHIN D H, CHOI S B, et al.Sugar-hormone cross-talk in anthocyanin biosynthesis[J]. Molecules and Cells, 2012, 34(6): 501-507. [44] GARAY-ARROYO A, DE LA PAZ SÁNCHEZ M, GARCÍA-PONCE B, et al. Hormone symphony during root growth and development[J]. Developmental Dynamics, 2012, 241(12): 1867-1885. [45] YAMADA M, SAWA S.The roles of peptide hormones during plant root development[J]. Current Opinion in Plant Biology, 2013, 16(1): 56-61. [46] YAKHIN O I, LUBYANOV A A, YAKHIN I A.Changes in cytokinin, auxin, and abscisic acid contents in wheat seedlings treated with the growth regulator Stifun[J]. Russian Journal of Plant Physiology, 2012, 59(3): 398-405. [47] ALONI R, ALONI E, LANGHANS M, et al.Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism[J]. Annals of Botany, 2006, 97(5): 883-893. [48] SAMUELSON M E, LARSSON C M.Nitrate regulation of zeation riboside levels in barley roots: effects of inhibitors of N assimilation and comparison with ammonium[J]. Plant Science, 1993, 93(1/2): 77-84. |