[1] |
高江. 新疆棉种产业发展问题剖析[J]. 棉花科学, 2022, 44(2): 9-15.
|
|
GAO J. Analysis of Xinjiang cotton seed industry development[J]. Cotton Sciences, 2022, 44(2): 9-15. (in Chinese with English abstract)
|
[2] |
杨德松, 姬华, 王星, 等. 影响新疆棉叶螨发生因素的研究[J]. 中国棉花, 2004, 31(6): 10-11.
|
|
YANG D S, JI H, WANG X, et al. Study on the factors affecting the occurrence of cotton spider mite in Xinjiang[J]. China Cotton, 2004, 31(6): 10-11. (in Chinese with English abstract)
|
[3] |
GREWAL P S, OLOUMI F, RUBIN U, et al. Deep learning in ophthalmology: a review[J]. Canadian Journal of Ophthalmology, 2018, 53(4): 309-313.
|
[4] |
KAMILARIS A, PRENAFETA-BOLDÚ F X. Deep learning in agriculture: a survey[J]. Computers and Electronics in Agriculture, 2018, 147: 70-90.
|
[5] |
REVATHI P, HEMALATHA M. Identification of cotton diseases based on cross information gain_deep forward neural network classifier with PSO feature selection[J]. International Journal of Engineering and Technology, 2013, 5(6): 4637-4642.
|
[6] |
BOULENT J, FOUCHER S, THÉAU J, et al. Convolutional neural networks for the automatic identification of plant diseases[J]. Frontiers in Plant Science, 2019, 10: 941.
|
[7] |
许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236.
|
|
XU J H, SHAO M Y, WANG Y C, et al. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 230-236. (in Chinese with English abstract)
|
[8] |
吴沧海, 熊焕亮, 裘武. 基于Matlab的柑橘始叶螨边缘检测的研究[J]. 微计算机信息, 2010, 26(26): 198-199.
|
|
WU C H, XIONG H L, QIU W. Research of yellow-spider’s edge detection based on MATLAB[J]. Microcomputer Information, 2010, 26(26): 198-199. (in Chinese with English abstract)
|
[9] |
杨丽丽, 张大卫, 罗君, 等. 基于SVM和AdaBoost的棉叶螨危害等级识别[J]. 农业机械学报, 2019, 50(2): 14-20.
|
|
YANG L L, ZHANG D W, LUO J, et al. Automatic recognition for cotton spider mites damage level based on SVM and AdaBoost[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 14-20. (in Chinese with English abstract)
|
[10] |
CHENG X, ZHANG Y H, CHEN Y Q, et al. Pest identification via deep residual learning in complex background[J]. Computers and Electronics in Agriculture, 2017, 141: 351-356.
|
[11] |
张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171.
|
|
ZHANG J H, KONG F T, WU J Z, et al. Cotton disease identification model based on improved VGG convolution neural network[J]. Journal of China Agricultural University, 2018, 23(11): 161-171. (in Chinese with English abstract)
|
[12] |
何东健, 王鹏, 牛童, 等. 基于改进残差网络的田间葡萄霜霉病病害程度分级模型[J]. 农业机械学报, 2022, 53(1): 235-243.
|
|
HE D J, WANG P, NIU T, et al. Classification model of grape downy mildew disease degree in field based on improved residual network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 235-243. (in Chinese with English abstract)
|
[13] |
JENIFA A, RAMALAKSHMI R, RAMACHANDRAN V. Cotton leaf disease classification using deep convolution neural network for sustainable cotton production[C]// 2019 IEEE International Conference on Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development (INCCES). December 18-20, 2019. Krishnankoil, India: IEEE, 2020: 1-3.
|
[14] |
CALDEIRA R F, SANTIAGO W E, TERUEL B. Identification of cotton leaf lesions using deep learning techniques[J]. Sensors (Basel, Switzerland), 2021, 21(9): 3169.
|
[15] |
YANG L L, LUO J, WANG Z P, et al. Research on recognition for cotton spider mites’ damage level based on deep learning[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(6): 129-134.
|
[16] |
HUGHES D P, SALATHE M. An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL]. (2015-11-25) [2022-08-03]. https://arxiv.org/abs/1511.08060v2
|
[17] |
国家质量监督检验检疫总局, 中国国家标准化管理委员会.棉花叶螨测报技术规范: GB/T 15802—2011[S]. 北京: 中国标准出版社, 2011.
|
[18] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV, USA: IEEE, 2016: 770-778.
|
[19] |
PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
|
[20] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
|
[21] |
王卓, 王健, 王枭雄, 等. 基于改进YOLO v4的自然环境苹果轻量级检测方法[J]. 农业机械学报, 2022, 53(8): 294-302.
|
|
WANG Z, WANG J, WANG X X, et al. Lightweight real-time apple detection method based on improved YOLO v4[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 294-302. (in Chinese with English abstract)
|
[22] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. ( 2017-06-12) [2022-08-03]. https://arxiv.org/abs/1706.03762v4
|
[23] |
LAROCHELLE H, HINTON G. Learning to combine foveal glimpses with a third-order Boltzmann machine[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems: Volume 1. December 6-9, 2010. Vancouver: ACM, 2010: 1243-1251.
|
[24] |
孙萍, 胡旭东, 张永军. 结合注意力机制的深度学习图像目标检测[J]. 计算机工程与应用, 2019, 55(17): 180-184.
|
|
SUN P, HU X D, ZHANG Y J. Object detection based on deep learning and attention mechanism[J]. Computer Engineering and Applications, 2019, 55(17): 180-184. (in Chinese with English abstract)
|
[25] |
MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[EB/OL]. ( 2014-06-25) [2022-08-03]. https://arxiv.org/abs/1406.6247
|
[26] |
BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL]. ( 2014-09-01) [2022-08-03]. https://arxiv.org/abs/1409.0473v7
|
[27] |
XU K, BA J, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[EB/OL]. ( 2015-02-10) [2022-08-03]. https://arxiv.org/abs/1502.03044
|
[28] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
|
[29] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
|
[30] |
FU J L, ZHENG H L, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA: IEEE, 2017: 4476-4484.
|
[31] |
万昊, 任勇, 山秀明. 基于混淆矩阵的全方位角雷达目标识别[J]. 微电子学与计算机, 2005, 22(3): 136-139.
|
|
WAN H, REN Y, SHAN X M. Confusion-matrix based whole-aspect-range HRRP recognition[J]. Microelectronics & Computer, 2005, 22(3): 136-139. (in Chinese with English abstract)
|