浙江农业学报 ›› 2023, Vol. 35 ›› Issue (7): 1720-1728.DOI: 10.3969/j.issn.1004-1524.20220807
叶会1,2(), 陈瑜婷1, 骆玉琴2, 范续艳2, 雷圆2, 陆兰菲2, 郝培培3, 程有普1,*(
), 张昌朋2,*(
)
收稿日期:
2022-05-31
出版日期:
2023-07-25
发布日期:
2023-08-17
作者简介:
叶会(1996—),女,贵州安顺人,硕士研究生,研究方向为农药残留与农产品安全。E-mail: 827004242@qq.com
通讯作者:
*程有普,E-mail: chengyoupu@tjau.edu.cn;基金资助:
YE Hui1,2(), CHEN Yuting1, LUO Yuqin2, FAN Xuyan2, LEI Yuan2, LU Lanfei2, HAO Peipei3, CHENG Youpu1,*(
), ZHANG Changpeng2,*(
)
Received:
2022-05-31
Online:
2023-07-25
Published:
2023-08-17
Contact:
CHENG Youpu,ZHANG Changpeng
摘要:
为明确吡唑醚菌酯乳油(EC)和微囊悬浮剂(CS)在草莓上的残留规律,分别以两种剂量(90 和150 g·hm-2)于草莓成熟期施药,开展吡唑醚菌酯在草莓及土壤中的残留动态试验。结果表明,吡唑醚菌酯经QuEChERS-UPLC-MS/MS后的最低检测浓度分别为0.002 0(草莓和土壤)和0.005 0 mg·kg-1(叶、茎和根)。在0.002~2 mg·kg-1添加水平下,吡唑醚菌酯(草莓和土壤)的平均回收率为88%~110%,相对标准偏差(RSD)为1%~9%;在0.005~2 mg·kg-1范围内,平均回收率(根、茎及叶)为74%~108%,RSD为2%~9%。残留试验结果表明,吡唑醚菌酯EC和CS施药1 d后在草莓中的残留分别为0.20~0.28 mg·kg-1(90~150 g·hm-2)和0.14~0.20 mg·kg-1(90~150 g·hm-2),残留量低于0.5 mg·kg-1,均符合我国和欧盟在草莓中的限量值。吡唑醚菌酯仅在草莓、茎和叶的降解动态符合一级动力学模型,在草莓中的半衰期为6.6~6.8 d(EC)和7.7~9.8 d(CS),属于易降解农药。试验结果为微囊悬浮剂剂型吡唑醚菌酯在草莓体系上的安全使用提供了数据支持。
中图分类号:
叶会, 陈瑜婷, 骆玉琴, 范续艳, 雷圆, 陆兰菲, 郝培培, 程有普, 张昌朋. 两种剂型吡唑醚菌酯在草莓中的残留及消解动态[J]. 浙江农业学报, 2023, 35(7): 1720-1728.
YE Hui, CHEN Yuting, LUO Yuqin, FAN Xuyan, LEI Yuan, LU Lanfei, HAO Peipei, CHENG Youpu, ZHANG Changpeng. Residue and dissipation dynamics of two formulations of pyraclostrobin in strawberry[J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1720-1728.
保留时间 Retention time/min | 母离子 Precursor ion(m/z) | 子离子 Product ion(m/z) | 滞留时间 Dwell time/s | 锥孔电压 Cone voltage/V | 碰撞能 Collision energy/eV |
---|---|---|---|---|---|
1.51 | 388.01 | 197.03* | 0.061 | 18 | 28 |
388.01 | 163.05 | 0.061 | 18 | 12 |
表1 吡唑醚菌酯的质谱参数
Table 1 Mass spectrometric parameters of pyraclostrobin
保留时间 Retention time/min | 母离子 Precursor ion(m/z) | 子离子 Product ion(m/z) | 滞留时间 Dwell time/s | 锥孔电压 Cone voltage/V | 碰撞能 Collision energy/eV |
---|---|---|---|---|---|
1.51 | 388.01 | 197.03* | 0.061 | 18 | 28 |
388.01 | 163.05 | 0.061 | 18 | 12 |
线性范围 Linear range/ (mg·L-1) | 基质 Matrix | 回归方程 Regression equation | 决定系数 Coefficient of determination | 基质效应 ME | 检出限 LOD/ (mg·L-1) | 定量限 LOQ/ (mg·kg-1) |
---|---|---|---|---|---|---|
0.0005~0.1 | 乙腈Acetonitrile | y=1 938 010.57x+4 352.84 | 0.999 7 | — | — | — |
叶Leaf | y=2 804 465.99x+1 0761.20 | 0.998 9 | 0.87 | 0.000 5 | 0.005 0 | |
茎Stem | y=2 576 648.62x+3 515.89 | 1.000 0 | 0.85 | 0.000 5 | 0.005 0 | |
草莓Strawberry | y=1 992 976.51x+6 239.22 | 0.999 2 | 1.03 | 0.000 5 | 0.002 0 | |
根Root | y=2 081 043.87x+6 103.10 | 0.999 8 | 1.07 | 0.000 5 | 0.005 0 | |
土壤Soil | y=2 292 365.17x+7 089.11 | 0.999 8 | 1.21 | 0.000 5 | 0.002 0 |
表2 吡唑醚菌酯在草莓体系中的回归方程、决定系数、检出限、定量限和基质效应
Table 2 Regression equation, coefficient of determination (R2), limit of detection (LOD), limit of quantitation (LOQ) and matrix effect (ME) of pyraclostrobin in strawberry
线性范围 Linear range/ (mg·L-1) | 基质 Matrix | 回归方程 Regression equation | 决定系数 Coefficient of determination | 基质效应 ME | 检出限 LOD/ (mg·L-1) | 定量限 LOQ/ (mg·kg-1) |
---|---|---|---|---|---|---|
0.0005~0.1 | 乙腈Acetonitrile | y=1 938 010.57x+4 352.84 | 0.999 7 | — | — | — |
叶Leaf | y=2 804 465.99x+1 0761.20 | 0.998 9 | 0.87 | 0.000 5 | 0.005 0 | |
茎Stem | y=2 576 648.62x+3 515.89 | 1.000 0 | 0.85 | 0.000 5 | 0.005 0 | |
草莓Strawberry | y=1 992 976.51x+6 239.22 | 0.999 2 | 1.03 | 0.000 5 | 0.002 0 | |
根Root | y=2 081 043.87x+6 103.10 | 0.999 8 | 1.07 | 0.000 5 | 0.005 0 | |
土壤Soil | y=2 292 365.17x+7 089.11 | 0.999 8 | 1.21 | 0.000 5 | 0.002 0 |
基质 Matrix | 加标水平 Spike level/ (mg·kg-1) | 日内精密度Intra-day (n=5)/% | 日间精密度Inter-day (n=15)/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 d | 2 d | 3 d | |||||||||
Rec | RSD | Rec | RSD | Rec | RSD | Rec | RSD | ||||
叶Leaf | 0.005 | 89 | 8 | 89 | 4 | 87 | 5 | 89 | 8 | ||
0.01 | 78 | 4 | 79 | 3 | 74 | 3 | 76 | 3 | |||
2 | 83 | 5 | 80 | 6 | 79 | 5 | 81 | 3 | |||
茎Stem | 0.005 | 91 | 9 | 97 | 8 | 92 | 9 | 93 | 9 | ||
0.01 | 91 | 5 | 81 | 7 | 87 | 7 | 97 | 8 | |||
2 | 77 | 4 | 83 | 5 | 86 | 5 | 91 | 9 | |||
草莓 | 0.002 | 96 | 3 | 97 | 1 | 96 | 4 | 97 | 4 | ||
Strawberry | 0.01 | 94 | 3 | 96 | 4 | 88 | 2 | 107 | 3 | ||
2 | 97 | 1 | 91 | 2 | 94 | 1 | 96 | 1 | |||
根Root | 0.005 | 106 | 2 | 108 | 6 | 101 | 4 | 107 | 4 | ||
0.01 | 96 | 6 | 94 | 6 | 101 | 5 | 105 | 5 | |||
2 | 93 | 2 | 92 | 3 | 92 | 3 | 94 | 2 | |||
土壤Soil | 0.002 | 110 | 9 | 105 | 6 | 101 | 6 | 104 | 7 | ||
0.01 | 99 | 7 | 103 | 6 | 104 | 7 | 102 | 6 | |||
2 | 99 | 4 | 95 | 3 | 97 | 4 | 94 | 4 |
表3 吡唑醚菌酯在草莓栽培体系中的平均回收率和相对标准偏差
Table 3 Average recoveries and relative standard deviations of pyraclostrobin in strawberry cultivation system
基质 Matrix | 加标水平 Spike level/ (mg·kg-1) | 日内精密度Intra-day (n=5)/% | 日间精密度Inter-day (n=15)/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 d | 2 d | 3 d | |||||||||
Rec | RSD | Rec | RSD | Rec | RSD | Rec | RSD | ||||
叶Leaf | 0.005 | 89 | 8 | 89 | 4 | 87 | 5 | 89 | 8 | ||
0.01 | 78 | 4 | 79 | 3 | 74 | 3 | 76 | 3 | |||
2 | 83 | 5 | 80 | 6 | 79 | 5 | 81 | 3 | |||
茎Stem | 0.005 | 91 | 9 | 97 | 8 | 92 | 9 | 93 | 9 | ||
0.01 | 91 | 5 | 81 | 7 | 87 | 7 | 97 | 8 | |||
2 | 77 | 4 | 83 | 5 | 86 | 5 | 91 | 9 | |||
草莓 | 0.002 | 96 | 3 | 97 | 1 | 96 | 4 | 97 | 4 | ||
Strawberry | 0.01 | 94 | 3 | 96 | 4 | 88 | 2 | 107 | 3 | ||
2 | 97 | 1 | 91 | 2 | 94 | 1 | 96 | 1 | |||
根Root | 0.005 | 106 | 2 | 108 | 6 | 101 | 4 | 107 | 4 | ||
0.01 | 96 | 6 | 94 | 6 | 101 | 5 | 105 | 5 | |||
2 | 93 | 2 | 92 | 3 | 92 | 3 | 94 | 2 | |||
土壤Soil | 0.002 | 110 | 9 | 105 | 6 | 101 | 6 | 104 | 7 | ||
0.01 | 99 | 7 | 103 | 6 | 104 | 7 | 102 | 6 | |||
2 | 99 | 4 | 95 | 3 | 97 | 4 | 94 | 4 |
剂型 Formulation | 剂量 Dose/ (g·hm-2) | 时间 Time | 草莓 Strawberry/ (mg·kg-1) | 叶 Leaf/ (mg·kg-1) | 茎 Stem/ (mg·kg-1) | 根 Root/ (mg·kg-1) | 土壤 Soil/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
乳油EC | 90 | 2 h | 0.25±0.01 | 7.83±0.12 | 1.64±0.04 | 0.11±0.01 | 0.02±0 |
1 d | 0.20±0.01 | 6.52±0.05 | 1.33±0.04 | 0.17±0.01 | 0.01±0 | ||
3 d | 0.14±0.01 | 5.53±0.01 | 1.27±0.02 | 0.07±0 | 0.01±0 | ||
5 d | 0.11±0 | 5.12±0.01 | 0.95±0.04 | 0.06±0 | 0.01±0 | ||
7 d | 0.10±0.01 | 4.69±0.30 | 0.87±0.66 | 0.04±0 | 0.01±0 | ||
10 d | 0.08±0.01 | 4.33±0.08 | 0.72±0.08 | 0.05±0 | 0.02±0 | ||
150 | 2 h | 0.27±0.01 | 9.75±0.05 | 2.12±0.07 | 0.22±0.01 | 0.02±0 | |
1 d | 0.28±0.01 | 8.80±0.10 | 2.28±0.08 | 0.16±0 | 0.01±0 | ||
3 d | 0.25±0.01 | 8.12±0.14 | 1.83±0.07 | 0.11±0 | 0.02±0 | ||
5 d | 0.19±0.01 | 8.03±0.16 | 1.56±0.09 | 0.10±0.01 | 0.02±0 | ||
7 d | 0.14±0 | 7.30±0.29 | 1.12±0.06 | 0.08±0 | 0.02±0 | ||
10 d | 0.11±0 | 6.42±0.19 | 1.07±0.09 | 0.05±0 | 0.02±0 | ||
微囊悬浮剂CS | 90 | 2 h | 0.16±0 | 5.94±0.10 | 1.09±0.03 | 0.07±0 | 0.02±0 |
1 d | 0.14±0.01 | 5.10±0.01 | 0.92±0.09 | 0.07±0 | 0.02±0 | ||
3 d | 0.10±0.01 | 4.97±0.06 | 0.76±0.03 | 0.09±0 | 0.01±0 | ||
5 d | 0.10±0.01 | 4.62±0.16 | 0.69±0.06 | 0.05±0 | 0.02±0 | ||
7 d | 0.09±0.01 | 4.56±0.01 | 0.65±0.05 | 0.07±0.01 | 0.01±0 | ||
10 d | 0.06±0.01 | 3.57±0.01 | 0.60±0.03 | 0.03±0 | 0.02±0 | ||
150 | 2 h | 0.21±0.01 | 8.90±0.17 | 1.68±0.03 | 0.10±0.01 | 0.02±0 | |
1 d | 0.20±0.01 | 8.53±0.14 | 1.62±0.06 | 0.14±0 | 0.03±0 | ||
3 d | 0.16±0.01 | 7.37±0.30 | 1.22±0.05 | 0.13±0.01 | 0.01±0 | ||
5 d | 0.16±0.01 | 7.25±0.22 | 1.16±0.01 | 0.07±0.01 | 0.02±0 | ||
7 d | 0.12±0.01 | 7.16±0.35 | 1.17±0.01 | 0.05±0.01 | 0.03±0 | ||
10 d | 0.10±0.01 | 6.48±0.35 | 0.94±0.06 | 0.04±0 | 0.03±0 |
表4 不同剂型和剂量的吡唑醚菌酯在设施草莓栽培体系中的残留
Table 4 Residues of pyraclostrobin for different formulations and doses in strawberry cultivation system
剂型 Formulation | 剂量 Dose/ (g·hm-2) | 时间 Time | 草莓 Strawberry/ (mg·kg-1) | 叶 Leaf/ (mg·kg-1) | 茎 Stem/ (mg·kg-1) | 根 Root/ (mg·kg-1) | 土壤 Soil/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
乳油EC | 90 | 2 h | 0.25±0.01 | 7.83±0.12 | 1.64±0.04 | 0.11±0.01 | 0.02±0 |
1 d | 0.20±0.01 | 6.52±0.05 | 1.33±0.04 | 0.17±0.01 | 0.01±0 | ||
3 d | 0.14±0.01 | 5.53±0.01 | 1.27±0.02 | 0.07±0 | 0.01±0 | ||
5 d | 0.11±0 | 5.12±0.01 | 0.95±0.04 | 0.06±0 | 0.01±0 | ||
7 d | 0.10±0.01 | 4.69±0.30 | 0.87±0.66 | 0.04±0 | 0.01±0 | ||
10 d | 0.08±0.01 | 4.33±0.08 | 0.72±0.08 | 0.05±0 | 0.02±0 | ||
150 | 2 h | 0.27±0.01 | 9.75±0.05 | 2.12±0.07 | 0.22±0.01 | 0.02±0 | |
1 d | 0.28±0.01 | 8.80±0.10 | 2.28±0.08 | 0.16±0 | 0.01±0 | ||
3 d | 0.25±0.01 | 8.12±0.14 | 1.83±0.07 | 0.11±0 | 0.02±0 | ||
5 d | 0.19±0.01 | 8.03±0.16 | 1.56±0.09 | 0.10±0.01 | 0.02±0 | ||
7 d | 0.14±0 | 7.30±0.29 | 1.12±0.06 | 0.08±0 | 0.02±0 | ||
10 d | 0.11±0 | 6.42±0.19 | 1.07±0.09 | 0.05±0 | 0.02±0 | ||
微囊悬浮剂CS | 90 | 2 h | 0.16±0 | 5.94±0.10 | 1.09±0.03 | 0.07±0 | 0.02±0 |
1 d | 0.14±0.01 | 5.10±0.01 | 0.92±0.09 | 0.07±0 | 0.02±0 | ||
3 d | 0.10±0.01 | 4.97±0.06 | 0.76±0.03 | 0.09±0 | 0.01±0 | ||
5 d | 0.10±0.01 | 4.62±0.16 | 0.69±0.06 | 0.05±0 | 0.02±0 | ||
7 d | 0.09±0.01 | 4.56±0.01 | 0.65±0.05 | 0.07±0.01 | 0.01±0 | ||
10 d | 0.06±0.01 | 3.57±0.01 | 0.60±0.03 | 0.03±0 | 0.02±0 | ||
150 | 2 h | 0.21±0.01 | 8.90±0.17 | 1.68±0.03 | 0.10±0.01 | 0.02±0 | |
1 d | 0.20±0.01 | 8.53±0.14 | 1.62±0.06 | 0.14±0 | 0.03±0 | ||
3 d | 0.16±0.01 | 7.37±0.30 | 1.22±0.05 | 0.13±0.01 | 0.01±0 | ||
5 d | 0.16±0.01 | 7.25±0.22 | 1.16±0.01 | 0.07±0.01 | 0.02±0 | ||
7 d | 0.12±0.01 | 7.16±0.35 | 1.17±0.01 | 0.05±0.01 | 0.03±0 | ||
10 d | 0.10±0.01 | 6.48±0.35 | 0.94±0.06 | 0.04±0 | 0.03±0 |
图1 不同剂型和剂量的吡唑醚菌酯在草莓、叶和茎中的消解动态 EC,乳油;CS,微囊悬浮剂;推荐低剂量90 g·hm-2;推荐高剂量,150 g·hm-2。
Fig.1 Degradation dynamics of pyraclostrobin in strawberry, leaf and stem under different formulations and doses EC, Emulsifiable concentrate; CS, Microencapsule suspension; Recommended low dose 90 g·hm-2; Recommended high dose 150 g ·hm-2.
剂型 Formulation | 样品 Sample | 回归方程 Regression equation | 决定系数 Determination coefficient(R2) | 半衰期 Half-life/d | |||
---|---|---|---|---|---|---|---|
90 g·hm-2 | 150 g·hm-2 | 90 g·hm-2 | 150 g ·hm-2 | 90 g ·hm-2 | 150 g ·hm-2 | ||
乳油EC | 草莓Strawberry | Ct=0.212 6e-0.1051t | Ct=0.301 8e-0.1015t | 0.923 5 | 0.925 6 | 6.6 | 6.8 |
茎Stem | Ct=1.581 2e-0.0814t | Ct=2.268 7e-0.0813t | 0.965 5 | 0.926 4 | 8.5 | 8.6 | |
叶Leaf | Ct=7.05 0e-0.0550t | Ct=9.419 3e-0.0380t | 0.890 3 | 0.951 1 | 12.6 | 18.2 | |
微囊悬浮剂 | 草莓Strawberry | Ct=0.148 7e-0.0895t | Ct=0.208 3e-0.0708t | 0.929 3 | 0.947 4 | 7.7 | 9.8 |
CS | 茎Stem | Ct=0.978 1e-0.0558t | Ct=1.615 6e-0.0540t | 0.877 5 | 0.895 7 | 12.4 | 12.5 |
叶Leaf | Ct=5.690 2e-0.0423t | Ct=8.612 2e-0.0297t | 0.894 3 | 0.896 2 | 16.5 | 23.1 |
表5 不同剂型和剂量的吡唑醚菌酯在草莓、叶和茎的半衰期和消解动力学参数
Table 5 The half-life and degradation kinetic parameters of pyraclostrobin in strawberry, leaf and stem under different formulations and doses
剂型 Formulation | 样品 Sample | 回归方程 Regression equation | 决定系数 Determination coefficient(R2) | 半衰期 Half-life/d | |||
---|---|---|---|---|---|---|---|
90 g·hm-2 | 150 g·hm-2 | 90 g·hm-2 | 150 g ·hm-2 | 90 g ·hm-2 | 150 g ·hm-2 | ||
乳油EC | 草莓Strawberry | Ct=0.212 6e-0.1051t | Ct=0.301 8e-0.1015t | 0.923 5 | 0.925 6 | 6.6 | 6.8 |
茎Stem | Ct=1.581 2e-0.0814t | Ct=2.268 7e-0.0813t | 0.965 5 | 0.926 4 | 8.5 | 8.6 | |
叶Leaf | Ct=7.05 0e-0.0550t | Ct=9.419 3e-0.0380t | 0.890 3 | 0.951 1 | 12.6 | 18.2 | |
微囊悬浮剂 | 草莓Strawberry | Ct=0.148 7e-0.0895t | Ct=0.208 3e-0.0708t | 0.929 3 | 0.947 4 | 7.7 | 9.8 |
CS | 茎Stem | Ct=0.978 1e-0.0558t | Ct=1.615 6e-0.0540t | 0.877 5 | 0.895 7 | 12.4 | 12.5 |
叶Leaf | Ct=5.690 2e-0.0423t | Ct=8.612 2e-0.0297t | 0.894 3 | 0.896 2 | 16.5 | 23.1 |
图2 不同剂型和剂量的吡唑醚菌酯在草莓体系中的沉积及分布规律
Fig.2 Deposition and distribution patterns of pyraclostrobin in strawberry cultivation system under different formulations and doses
[1] | 舒锐, 焦健, 臧传江, 等. 我国草莓产业现状及发展建议[J]. 中国果菜, 2019, 39(1): 51-53. |
SHU R, JIAO J, ZANG C J, et al. The Current situation and development suggestions of strawberry industry in China[J]. China Fruit & Vegetable, 2019, 39(1): 51-53. (in Chinese with English abstract) | |
[2] | 张振荣, 田云霞, 董琼娥, 等. 基于高通量测序的草莓白粉病病原菌分析[J]. 西南农业学报, 2021, 34(7): 1439-1443. |
ZHANG Z R, TIAN Y X, DONG Q E, et al. Analysis of pathogen of strawberry powdery mildew based on high-throughput sequencing[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(7): 1439-1443. (in Chinese with English abstract) | |
[3] | YOSHIDA K, ASANO S. Efficacy of fungicides, and resistance among cultivars, in the control of strawberry powdery mildew[J]. Annual Report of the Kansai Plant Protection Society, 2019, 61: 125-128. |
[4] | CHEN X Y, DAI D J, ZHAO S F, et al. Genetic diversity of Colletotrichum spp. causing strawberry anthracnose in Zhejiang, China[J]. Plant Disease, 2020, 104(5): 1351-1357. |
[5] | 高萍, 高士刚, 成玮, 等. 上海市草莓灰霉病菌对氟吡菌酰胺敏感性检测及抗性分子机制[J]. 植物保护, 2021, 47(4): 215-220. |
GAO P, GAO S G, CHENG W, et al. Sensitivity and resistance molecular mechanism of Botrytis cinerea to fluopyram in strawberry in Shanghai[J]. Plant Protection, 2021, 47(4): 215-220. (in Chinese with English abstract) | |
[6] | 吴声敢, 柴伟纲, 柳新菊, 等. 不同杀菌剂对草莓灰霉病的防治效果[J]. 浙江农业科学, 2019, 60(11): 1985-1988. |
WU S G, CHAI W G, LIU X J, et al. Control effect of different fungicides on strawberry gray mold[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(11): 1985-1988. (in Chinese) | |
[7] | 周晓肖, 杨肖芳, 邱莉萍, 等. 杀菌剂组合对草莓炭疽病的防效及其对草莓生长和品质影响[J]. 现代农药, 2018, 17(5): 42-45. |
ZHOU X X, YANG X F, QIU L P, et al. Efficacies of fungicide combinations aganist anthracnose and its effects on the growth and quality of strawberry[J]. Modern Agrochemicals, 2018, 17(5): 42-45. (in Chinese with English abstract) | |
[8] | JAFARI A, SHOEIBI S, AMINI M, et al. Monitoring dithiocarbamate fungicide residues in greenhouse and non-greenhouse tomatoes in Iran by HPLC-UV[J]. Food Additives & Contaminants: Part B, 2012, 5(2): 87-92. |
[9] | YANG G Q, LI J M, LAN T T, et al. Dissipation, residue, stereoselectivity and dietary risk assessment of penthiopyrad and metabolite PAM on cucumber and tomato in greenhouse and field[J]. Food Chemistry, 2022, 387: 132875. |
[10] | 杨丽娟, 柏亚罗. 甲氧基丙烯酸酯类杀菌剂: 吡唑醚菌酯[J]. 现代农药, 2012, 11(4): 46-50, 56. |
YANG L J, BAI Y L. Strobilurin fungicide—pyraclostrobin[J]. Modern Agrochemicals, 2012, 11(4): 46-50, 56. (in Chinese with English abstract) | |
[11] | 张一宾. 甲氧基丙烯酸酯类杀菌剂的全球市场概况及进展[J]. 世界农药, 2016, 38(4): 30-34. |
ZHANG Y B. Development and global market of strobilurin fungicides[J]. World Pesticide, 2016, 38(4): 30-34. (in Chinese with English abstract) | |
[12] | 中国农药信息网. 农药登记数据[EB/OL]. [2022-05-30]. http://www.chinapesticide.org.cn/yxcftozw.jhtml. |
[13] | 郭洋洋, 刘丰茂, 王娟, 等. 农药乳油中有害有机溶剂替代的研究进展[J]. 农药学学报, 2020, 22(6): 925-932. |
GUO Y Y, LIU F M, WANG J, et al. Research progress on substitution of harmful organic solvent in pesticide emulsifiable concentrates[J]. Chinese Journal of Pesticide Science, 2020, 22(6): 925-932. (in Chinese with English abstract) | |
[14] | 王仁飞, 范文娟, 王丹, 等. 9%吡唑醚菌酯微囊悬浮剂的制备与性能研究[J]. 现代农药, 2019, 18(6): 5-9, 30. |
WANG R F, FAN W J, WANG D, et al. Preparation and property of pyraclostrobin 9% CS[J]. Modern Agrochemicals, 2019, 18(6): 5-9, 30. (in Chinese with English abstract) | |
[15] | 闫宪飞. 吡唑醚菌酯蜜胺树脂微囊悬浮剂的制备与表征[D]. 长春: 吉林农业大学, 2018. |
YAN X F. Preparation and characterization of pyraclostrobin melamine resin microcapsule suspension concentrate[D]. Changchun: Jilin Agricultural University, 2018. (in Chinese with English abstract) | |
[16] | 高云. 不同加工剂型吡唑醚菌酯对水生生物毒性的影响[D]. 泰安: 山东农业大学, 2017. |
GAO Y. Effects of different processed dosage forms of pyraclostrobin on aquatic toxicity[D]. Taian: Shandong Agricultural University, 2017. (in Chinese with English abstract) | |
[17] | 王瑞, 曹海潮, 狄春香, 等. 微囊化溶剂对吡唑醚菌酯微囊悬浮剂应用性能的影响[J]. 农药学学报, 2022, 24(1): 114-122. |
WANG R, CAO H C, DI C X, et al. Effects of microencapsulated solvents on the application features of pyraclostrobin microcapsule suspension[J]. Chinese Journal of Pesticide Science, 2022, 24(1): 114-122. (in Chinese with English abstract) | |
[18] | 宋雯, 王强, 张怡, 等. 水培蕹菜使用吡唑醚菌酯的水生生态系统风险评估[J]. 农业环境科学学报, 2022, 41(6): 1202-1210. |
SONG W, WANG Q, ZHANG Y, et al. Risk assessment of aquatic ecosystem using pyraclostrobin in water spinach (Ipomoea aquatic Forsk) cultured in aquatic environment[J]. Journal of Agro-Environment Science, 2022, 41(6): 1202-1210. (in Chinese with English abstract) | |
[19] | 农药残留试验准则: NY/T 788—2018[S]. 北京: 中国农业出版社, 2018. |
[20] | LI Y J, XU J B, ZHAO X P, et al. The dissipation behavior, household processing factor and risk assessment for cyenopyrafen residues in strawberry and mandarin fruits[J]. Food Chemistry, 2021, 359: 129925. |
[21] | WANG Z W, DI S S, QI P P, et al. Dissipation, accumulation and risk assessment of fungicides after repeated spraying on greenhouse strawberry[J]. Science of the Total Environment, 2021, 758: 144067. |
[22] | 喻歆茹, 何红梅, 王祥云, 等. 啶虫脒在芹菜设施栽培体系下的沉积与残留[J]. 浙江农业学报, 2020, 32(12): 2211-2217. |
YU X R, HE H M, WANG X Y, et al. Deposition and residue of acetamiprid under protected celery cultivation[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2211-2217. (in Chinese with English abstract) | |
[23] | 国家卫生健康委员会, 农业农村部, 国家市场监督管理总局.食品安全国家标准食品中农药最大残留限量: GB 2763—2021[S]. 北京: 中国标准出版社, 2021. |
[24] | Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed(SANTE/11813/2017)[S]. EU (Eupropean Commission), 2017. |
[25] | 郑豪杰, 刘沁雨, 孙健, 等. 四种作物上登记吡唑醚菌酯单剂的水生生态风险评估[J]. 农药学学报, 2022, 24(2): 411-422. |
ZHENG H J, LIU Q Y, SUN J, et al. Advanced risk assessment for aquatic ecology of single-dose of pyraclostrobin registered on four crops[J]. Chinese Journal of Pesticide Science, 2022, 24(2): 411-422. (in Chinese with English abstract) | |
[26] | 熊锋. 吡唑醚菌酯在不同类型蔬菜中的残留消解及膳食风险评估[D]. 长沙: 湖南农业大学, 2018. |
XIONG F. Residue degradation and dietary risk assessment of pyraclostrobin in different vegetables[D]. Changsha: Hunan Agricultural University, 2018. (in Chinese with English abstract) |
[1] | 孙彩霞, 欧阳志周, 刘玉红, 于国光. 西兰花中3种杀菌剂的残留动态与风险评估[J]. 浙江农业学报, 2021, 33(7): 1292-1299. |
[2] | 王娣, 狄珊珊, 王新全, 张昌朋, 王祥云, 王萌, 章程辉. 豇豆不同生长时期施用毒死蜱的膳食风险[J]. 浙江农业学报, 2021, 33(6): 1104-1109. |
[3] | 王娣, 狄珊珊, 王新全, 张昌朋, 王祥云, 王萌. 丁硫克百威在豇豆不同时期施用的降解代谢研究[J]. 浙江农业学报, 2020, 32(11): 2050-2058. |
[4] | 章丽君, 章虎, 徐明飞, 林春绵, 吴慧珍, 徐杰, 钱鸣蓉. 葡萄酿制过程中5种杀菌剂的残留变化[J]. 浙江农业学报, 2019, 31(1): 149-154. |
[5] | 方琦, 张俊, 周锦云. 加工过程对柑橘罐头多菌灵残留的影响[J]. 浙江农业学报, 2018, 30(9): 1599-1603. |
[6] | 虞游毅, 杨璐, 廖享, 程平, 武胜利, 李宏. 高效氯氟氰菊酯和氯氰菊酯在苹果中的残留降解动态及其去除方法[J]. 浙江农业学报, 2018, 30(8): 1376-1381. |
[7] | 谢昀烨, 曾思锦, 袁月, 王连平, 方丽, 王汉荣. 浙江省新昌县茶叶炭疽病病原鉴定及其药剂敏感性测定[J]. 浙江农业学报, 2018, 30(7): 1188-1193. |
[8] | 李真, 孙彩霞, 戴芬, 郑蔚然, 于国光, 姚佳蓉, 王强. 食品安全国家标准GB 2763—2016对葡萄的新要求[J]. 浙江农业学报, 2018, 30(5): 840-847. |
[9] | 徐丽红1,吴应淼2,蔡铮1,郑蔚然1,叶长文2,吴银华2. 不同栽培方式下灰树花有害重金属、农药残留及硒含量比较[J]. 浙江农业学报, 2016, 28(1): 79-. |
[10] | 冯春野1,鲍佳沁1,方晓明2,*,丁卓平1,*. 上海地区市售果蔬农药残留状况调查与分析 [J]. 浙江农业学报, 2015, 27(3): 434-. |
[11] | 刘莉1,2,袁名安3,盛仙俏2,朱平阳2,王艳2,陈桂华2,*. 基质效应对黄瓜中4种有机磷农药残留检测的影响 [J]. 浙江农业学报, 2014, 26(6): 1564-. |
[12] | 何建红1,胡选祥1,赵帅锋1,柯汉云1,吴燕君2,赵丽2. 联苯肼酯在草莓上的残留降解及其安全使用 [J]. 浙江农业学报, 2014, 26(5): 1268-. |
[13] | 管文辰;王新全;章虎;徐浩;王祥云;王鸣华;王强;*. 不同清洗液对小白菜甲霜灵和苯醚甲环唑的去除效果[J]. , 2014, 26(2): 0-451455. |
[14] | 强承魁;凤舞剑;胡长效;王胜永;周保亚;王松松;秦越华;*. 徐州市葡萄主产区表层土壤和葡萄中农药残留特征与评价[J]. , 2013, 25(2): 0-297. |
[15] | 洪文英;吴燕君;章虎;钱鸣蓉;陈瑞. 嘧菌酯和吡唑醚菌酯在黄瓜中的残留降解行为及安全使用技术[J]. , 2012, 24(3): 0-475. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 501
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 354
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||