浙江农业学报 ›› 2024, Vol. 36 ›› Issue (7): 1666-1676.DOI: 10.3969/j.issn.1004-1524.20230479
王晓梅1,2(), 骆玉琴2, 赵学平2, 陆兰菲1,2, 方楠2, 王祥云2, 蒋金花2, 何红梅2, 张昌朋2,*(
), 王强1,2,*(
)
收稿日期:
2023-04-11
出版日期:
2024-07-25
发布日期:
2024-08-05
作者简介:
王晓梅(1998—),女,河南平顶山人,硕士研究生,研究方向为农产品质量安全。E-mail: xiaomeiwang1019@163.com
通讯作者:
*张昌朋,E-mail: cpzhang1215@zaas.ac.cn;王强,E-mail: wq13575733860@126.com
基金资助:
WANG Xiaomei1,2(), LUO Yuqin2, ZHAO Xueping2, LU Lanfei1,2, FANG Nan2, WANG Xiangyun2, JIANG Jinhua2, HE Hongmei2, ZHANG Changpeng2,*(
), WANG Qiang1,2,*(
)
Received:
2023-04-11
Online:
2024-07-25
Published:
2024-08-05
摘要:
建立一种可同时检测氟吡菌酰胺及其代谢物2-(三氯甲基)苯甲酰胺(BZM)在铁皮石斛(鲜样和干样)中残留量的分析方法,采用盆栽实验探究氟吡菌酰胺和BZM在铁皮石斛上的残留行为,评估氟吡菌酰胺的长期膳食风险。建立的检测方法为样品经乙腈提取后,用十八烷基硅烷键合硅胶、N-丙基乙二胺和石墨化碳净化,之后用超高效液相色谱-串联质谱法进行检测。在0.001~0.1 mg·L-1范围内,所建立的氟吡菌酰胺和BZM检测方法线性关系良好,决定系数(R2)≥0.998 1。在0.01、0.1、15 mg·kg-1的添加水平下,氟吡菌酰胺和BZM在铁皮石斛中的回收率分别为85.71%~97.98%、94.14%~112.21%,相对标准偏差分别为0.39%~5.93%、1.22%~6.73%。41.7%的氟吡菌酰胺悬浮剂以推荐剂量(有效成分375.3 g·hm-2)或2倍推荐剂量施用1次,氟吡菌酰胺在铁皮石斛鲜茎和干茎上的消解均符合一级动力学方程,消解半衰期为19.20~28.76 d,属于易降解农药。在实验条件下,施药后75 d,氟吡菌酰胺和BZM在铁皮石斛中的残留量分别不超过1.98、0.09 mg·kg-1。经测算,氟吡菌酰胺的全膳食国家估算每日摄入量为0.380 6 mg,对应的风险商为60.41%,说明41.7%的氟吡菌酰胺悬浮剂在推荐剂量下施用于铁皮石斛上并不会对人体健康产生不可接受的风险。
中图分类号:
王晓梅, 骆玉琴, 赵学平, 陆兰菲, 方楠, 王祥云, 蒋金花, 何红梅, 张昌朋, 王强. 氟吡菌酰胺在铁皮石斛中的残留与膳食风险[J]. 浙江农业学报, 2024, 36(7): 1666-1676.
WANG Xiaomei, LUO Yuqin, ZHAO Xueping, LU Lanfei, FANG Nan, WANG Xiangyun, JIANG Jinhua, HE Hongmei, ZHANG Changpeng, WANG Qiang. Residues and dietary risk assessment of fluopyram in Dendrobium officinale[J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1666-1676.
化合物 Compound | 母离子 Precursor | 子离子 Product | 锥孔电压 Cone voltage/V | 碰撞电压 Collision energy/V |
---|---|---|---|---|
氟吡菌酰胺Fluopyram | 397.1 | 208.0 | 30 | 40 |
173.0* | 30 | 30 | ||
2-(三氯甲基)苯甲酰胺 | 190.0 | 170.0* | 20 | 10 |
2-(Trifluoromethyl) benzamide | 130.0 | 20 | 20 |
表1 氟吡菌酰胺和2-(三氯甲基)苯甲酰胺的部分参数
Table 1 Parameters of fluopyram and 2-(trifluoromethyl) benzamide
化合物 Compound | 母离子 Precursor | 子离子 Product | 锥孔电压 Cone voltage/V | 碰撞电压 Collision energy/V |
---|---|---|---|---|
氟吡菌酰胺Fluopyram | 397.1 | 208.0 | 30 | 40 |
173.0* | 30 | 30 | ||
2-(三氯甲基)苯甲酰胺 | 190.0 | 170.0* | 20 | 10 |
2-(Trifluoromethyl) benzamide | 130.0 | 20 | 20 |
图2 0.01 mg·L-1的氟吡菌酰胺(左)、2-(三氯甲基)苯甲酰胺(右)的多重反应监测色谱图
Fig.2 Multi-reaction monitoring chromatogram of 0.01 mg·L-1 fluopyram (left) and 2-(trifluoromethyl) benzamide (right)
图3 不同提取溶剂对铁皮石斛鲜样(A)和干样(B)中氟吡菌酰胺、2-(三氯甲基)苯甲酰胺(BZM)回收率的影响 S1、S2、S3、S4分别表示以乙腈、1%甲酸乙腈、甲醇、乙酸乙酯作为提取溶剂。
Fig.3 Effect of different extraction solvents on the recovery of fluopyram and 2-(trifluoromethyl) benzamide in fresh (A) and dried (B) Dendrobium officinale Extract solvents of S1, S2, S3, and S4 are acetonitrile, 1% formic acid acetonitrile, methanol, and ethyl acetate, respectively.
图4 石墨化碳(PC)添加量对铁皮石斛鲜样(A)和干样(B)中氟吡菌酰胺、2-(三氯甲基)苯甲酰胺(BZM)回收率的影响
Fig.4 Effect of application amount of PestiCarb (PC) on the recovery of fluopyram and 2-(trifluoromethyl) benzamide (BZM) in fresh (A) and dried (B) Dendrobium officinale
样品 Sample | 化合物 Compound | 线性范围 Linear range/ (mg·L-1) | 回归方程 Regression equation | 决定系数 Determination coefficient | 基质效应 Matrix effect | 检出限 LOD/ (mg·L-1) | 定量限 LOQ/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
鲜茎 | 氟吡菌酰胺Fluopyram | 0.001~0.1 | y=4 250 459.188 1 x+3 037.381 8 | 0.998 1 | 0.93 | 0.001 | 0.001 |
Fresh stem | BZM | 0.001~0.1 | y=2 938 537.804 7 x+1 388.699 0 | 0.998 9 | 0.89 | 0.001 | 0.001 |
干茎 | 氟吡菌酰胺Fluopyram | 0.001~0.1 | y=1 834 865.947 1 x+394.743 1 | 1.000 0 | 0.89 | 0.01 | 0.01 |
Dried stem | BZM | 0.001~0.1 | y=1 062 565.961 4x-416.343 0 | 1.000 0 | 0.71 | 0.01 | 0.01 |
表2 氟吡菌酰胺和2-(三氯甲基)苯甲酰胺(BZM)的线性范围、回归方程、决定系数、基质效应、检出限和定量限
Table 2 Linear range, regression equation, determination coefficient, matrix effect, limit of detection (LOD) and limit of quantitation (LOQ) for fluopyram and 2-(trifluoromethyl) benzamide (BZM)
样品 Sample | 化合物 Compound | 线性范围 Linear range/ (mg·L-1) | 回归方程 Regression equation | 决定系数 Determination coefficient | 基质效应 Matrix effect | 检出限 LOD/ (mg·L-1) | 定量限 LOQ/ (mg·kg-1) |
---|---|---|---|---|---|---|---|
鲜茎 | 氟吡菌酰胺Fluopyram | 0.001~0.1 | y=4 250 459.188 1 x+3 037.381 8 | 0.998 1 | 0.93 | 0.001 | 0.001 |
Fresh stem | BZM | 0.001~0.1 | y=2 938 537.804 7 x+1 388.699 0 | 0.998 9 | 0.89 | 0.001 | 0.001 |
干茎 | 氟吡菌酰胺Fluopyram | 0.001~0.1 | y=1 834 865.947 1 x+394.743 1 | 1.000 0 | 0.89 | 0.01 | 0.01 |
Dried stem | BZM | 0.001~0.1 | y=1 062 565.961 4x-416.343 0 | 1.000 0 | 0.71 | 0.01 | 0.01 |
化合物 Compound | 样品 Sample | 添加水平 Spiking level/(mg·kg-1) | 回收率 Recovery/% | 相对标准偏差 RSD/% |
---|---|---|---|---|
氟吡菌酰胺 | 鲜茎Fresh stem | 0.001 | 85.71 | 5.93 |
Fluopyram | 0.1 | 91.80 | 2.48 | |
15 | 88.10 | 3.62 | ||
干茎Dried stem | 0.01 | 93.27 | 0.39 | |
0.1 | 96.52 | 0.99 | ||
15 | 97.98 | 2.72 | ||
BZM | 鲜茎Fresh stem | 0.001 | 94.14 | 6.73 |
0.1 | 95.87 | 3.54 | ||
15 | 107.88 | 2.87 | ||
干茎Dried stem | 0.01 | 98.88 | 4.31 | |
0.1 | 98.61 | 1.22 | ||
15 | 112.21 | 1.93 |
表3 氟吡菌酰胺和2-(三氯甲基)苯甲酰胺(BZM)在铁皮石斛上的回收率与相对标准偏差
Table 3 Recovery and relative standard deviation (RSD) of fluopyram and 2-(trifluoromethyl) benzamide (BZM) in Dendrobium officinale
化合物 Compound | 样品 Sample | 添加水平 Spiking level/(mg·kg-1) | 回收率 Recovery/% | 相对标准偏差 RSD/% |
---|---|---|---|---|
氟吡菌酰胺 | 鲜茎Fresh stem | 0.001 | 85.71 | 5.93 |
Fluopyram | 0.1 | 91.80 | 2.48 | |
15 | 88.10 | 3.62 | ||
干茎Dried stem | 0.01 | 93.27 | 0.39 | |
0.1 | 96.52 | 0.99 | ||
15 | 97.98 | 2.72 | ||
BZM | 鲜茎Fresh stem | 0.001 | 94.14 | 6.73 |
0.1 | 95.87 | 3.54 | ||
15 | 107.88 | 2.87 | ||
干茎Dried stem | 0.01 | 98.88 | 4.31 | |
0.1 | 98.61 | 1.22 | ||
15 | 112.21 | 1.93 |
样品 Sample | 不同剂量下的回归方程 Regression equation under different doses | 不同剂量下的半衰期 Half-life under different doses/d | ||
---|---|---|---|---|
推荐剂量 Recommended dose | 二倍推荐剂量 Double recommended does | 推荐剂量 Recommended dose | 二倍推荐剂量 Double recommended does | |
鲜茎Fresh stem | Ct=3.258 7e-0.036 1t(0.829 3) | Ct=5.126 8e-0.030 4t(0.849 4) | 19.20 | 22.80 |
干茎Dried stem | Ct=7.7800e-0.028 2t(0.878 2) | Ct=9.482 2e-0.024 1t(0.908 3) | 24.58 | 28.76 |
表4 氟吡菌酰胺在铁皮石斛鲜样和干样中的降解方程与半衰期
Table 4 Dynamics equation and half-life of fluopyram in fresh and dried Dendrobium officinale
样品 Sample | 不同剂量下的回归方程 Regression equation under different doses | 不同剂量下的半衰期 Half-life under different doses/d | ||
---|---|---|---|---|
推荐剂量 Recommended dose | 二倍推荐剂量 Double recommended does | 推荐剂量 Recommended dose | 二倍推荐剂量 Double recommended does | |
鲜茎Fresh stem | Ct=3.258 7e-0.036 1t(0.829 3) | Ct=5.126 8e-0.030 4t(0.849 4) | 19.20 | 22.80 |
干茎Dried stem | Ct=7.7800e-0.028 2t(0.878 2) | Ct=9.482 2e-0.024 1t(0.908 3) | 24.58 | 28.76 |
登记作物 Registration crop | 食物种类 Food classification | 膳食量 Dietary intake/kg | 参考限量 Reference limit/(mg·kg-1) | NEDI/mg |
---|---|---|---|---|
马铃薯Potato | 薯类Tubers | 0.049 5 | 0.03 | 0.001 5 |
辣椒Pepper | 深色蔬菜Dark vegetables | 0.091 5 | 2 | 0.183 0 |
黄瓜Cucumber | 浅色蔬菜Light vegetables | 0.183 7 | 0.5 | 0.091 9 |
葡萄Grape | 水果Fruits | 0.045 7 | 2 | 0.091 4 |
坚果Nuts | 坚果Nuts | 0.003 9 | 0.04 | 0.000 2 |
铁皮石斛Dendrobium officinale | 酱油Soy sauce | 0.009 0 | 1.41 | 0.012 7 |
表5 推荐剂量氟吡菌酰胺在铁皮石斛中的长期膳食风险评估
Table 5 The chronic dietary risk assessment of fluopyram in Dendrobium officinale at recommended does
登记作物 Registration crop | 食物种类 Food classification | 膳食量 Dietary intake/kg | 参考限量 Reference limit/(mg·kg-1) | NEDI/mg |
---|---|---|---|---|
马铃薯Potato | 薯类Tubers | 0.049 5 | 0.03 | 0.001 5 |
辣椒Pepper | 深色蔬菜Dark vegetables | 0.091 5 | 2 | 0.183 0 |
黄瓜Cucumber | 浅色蔬菜Light vegetables | 0.183 7 | 0.5 | 0.091 9 |
葡萄Grape | 水果Fruits | 0.045 7 | 2 | 0.091 4 |
坚果Nuts | 坚果Nuts | 0.003 9 | 0.04 | 0.000 2 |
铁皮石斛Dendrobium officinale | 酱油Soy sauce | 0.009 0 | 1.41 | 0.012 7 |
[1] | 丰明凤, 高岩, 白嘉璇, 等. 铁皮石斛化学成分的分离与鉴定[J]. 沈阳药科大学学报, 2023, 40(5): 566-571. |
FENG M F, GAO Y, BAI J X, et al. Isolation and identification of the chemical constituents from Dendrobium officinale Kimura et Migo[J]. Journal of Shenyang Pharmaceutical University, 2023, 40(5): 566-571.(in Chinese with English abstract) | |
[2] | TANG H X, ZHAO T W, SHENG Y J, et al. Dendrobium officinale Kimura et Migo: a review on its ethnopharmacology, phytochemistry, pharmacology, and industrialization[J]. Evidence-Based Complementary and Alternative Medicine: ECAM, 2017, 2017: 7436259. |
[3] | 奚航献, 刘晨, 刘京晶, 等. 铁皮石斛化学成分、药理作用及其质量标志物(Q-marker)的预测分析[J]. 中草药, 2020, 51(11): 3097-3109. |
XI H X, LIU C, LIU J J, et al. Chemical components and pharmacological action for Dendrobium officinale and its prediction analysis on Q-marker[J]. Chinese Traditional and Herbal Drugs, 2020, 51(11): 3097-3109.(in Chinese with English abstract) | |
[4] | LIANG J, CHEN S X, HU Y D, et al. Protective roles and mechanisms of Dendrobium officinal polysaccharides on secondary liver injury in acute colitis[J]. International Journal of Biological Macromolecules, 2018, 107: 2201-2210. |
[5] | WU Y Y, LIANG C Y, LIU T T, et al. Protective roles and mechanisms of polysaccharides from Dendrobium officinal on natural aging-induced premature ovarian failure[J]. Biomedicine & Pharmacotherapy, 2018, 101: 953-960. |
[6] | 戴德江, 沈颖, 沈瑶, 等. 浙产特色中药材病虫害化学防治的研究进展[J]. 农药学学报, 2019, 21(S1): 759-771. |
DAI D J, SHEN Y, SHEN Y, et al. Research progress on chemical control for main disease and insect pests of characteristic Chinese herbal medicines in Zhejiang Province[J]. Chinese Journal of Pesticide Science, 2019, 21(S1): 759-771.(in Chinese with English abstract) | |
[7] | 游景茂, 郭杰, 李哲, 等. 铁皮石斛灰霉病病原分离鉴定及防治[J]. 中国中药杂志, 2019, 44(18): 3954-3959. |
YOU J M, GUO J, LI Z, et al. Isolation and identification of pathogen of Dendrobium officinale gray mold and its prevention and control[J]. China Journal of Chinese Materia Medica, 2019, 44(18): 3954-3959.(in Chinese with English abstract) | |
[8] | 赵玲琳, 王国荣, 沈伟东, 等. 铁皮石斛炭疽病病原菌的分离鉴定及其有效杀菌剂的筛选[J]. 植物保护, 2018, 44(6): 185-190. |
ZHAO L L, WANG G R, SHEN W D, et al. Isolation and identification of the pathogen of Dendrobium officinale anthracnose and fungicide screening in laboratory[J]. Plant Protection, 2018, 44(6): 185-190.(in Chinese with English abstract) | |
[9] | 谢显彪, 沈云峰, 杨祚斌, 等. 4种杀菌剂对紫皮石斛锈病的田间药效评价[J]. 植物保护, 2020, 46(4): 239-242. |
XIE X B, SHEN Y F, YANG Z B, et al. Field efficacy evaluation of four fungicides on dendrobium rust[J]. Plant Protection, 2020, 46(4): 239-242.(in Chinese with English abstract) | |
[10] | 李静, 张敬泽, 吴晓鹏, 等. 铁皮石斛疫病及其病原菌[J]. 菌物学报, 2008, 27(2): 171-176. |
LI J, ZHANG J Z, WU X P, et al. The causal agent of Dendrobium candidum blight disease[J]. Mycosystema, 2008, 27(2): 171-176.(in Chinese with English abstract) | |
[11] | SHARMA N, MANDAL K, SHARMA S. Dissipation and risk assessment of fluopyram and trifloxystrobin on onion by GC-MS/MS[J]. Environmental Science and Pollution Research, 2022, 29(53): 80612-80623. |
[12] | 赵建江, 王文桥, 马志强, 等. 两种新杀菌剂对番茄灰霉病的作用方式及田间防效[J]. 中国蔬菜, 2016(5): 18-21. |
ZHAO J J, WANG W Q, MA Z Q, et al. Action mode and field control efficiency of two new fungicides against tomato gray mould[J]. China Vegetables, 2016(5): 18-21.(in Chinese with English abstract) | |
[13] | 刘树林, 张娟, 郭飞. 50%氟吡菌酰胺悬浮剂对黄瓜灰霉病防控效果研究[J]. 现代农业科技, 2017(18): 86-87. |
LIU S L, ZHANG J, GUO F. Study on the control effect of 50% flupiromyl amide suspension concentrate on cucumber gray mold[J]. Modern Agricultural Science and Technology, 2017(18): 86-87.(in Chinese) | |
[14] | 张晓柯, 韩絮, 马薇薇, 等. 江苏省草莓灰霉病菌对氟吡菌酰胺敏感性基线的建立及抗性风险评估[J]. 南京农业大学学报, 2015, 38(5): 810-815. |
ZHANG X K, HAN X, MA W W, et al. Baseline sensitivity of fluopyram and its resistance risk assessment against Botrytis cinerea from strawberry in Jiangsu Province[J]. Journal of Nanjing Agricultural University, 2015, 38(5): 810-815.(in Chinese with English abstract) | |
[15] | VARGAS-PÉREZ M, EGEA GONZÁLEZ F J, GARRIDO FRENICH A. Dissipation and residue determination of fluopyram and its metabolites in greenhouse crops[J]. Journal of the Science of Food and Agriculture, 2020, 100(13): 4826-4833. |
[16] | WEI P, LIU Y N, LI W Z, et al. Metabolic and dynamic profiling for risk assessment of fluopyram, a typical phenylamide fungicide widely applied in vegetable ecosystem[J]. Scientific Reports, 2016, 6: 33898. |
[17] | 于福利, 付萍萍, 王素琴, 等. 番茄中氟吡菌酰胺残留量的气相色谱分析[J]. 农药, 2016, 55(4): 278-279. |
YU F L, FU P P, WANG S Q, et al. Determination of fluopyrac residues in tomato by gas chromatography[J]. Agrochemicals, 2016, 55(4): 278-279.(in Chinese with English abstract) | |
[18] | 赵成林, 王佛娇, 程小会, 等. 41.7%氟吡菌酰胺悬浮剂的高效液相色谱分析[J]. 农药, 2020, 59(1): 27-28. |
ZHAO C L, WANG F J, CHENG X H, et al. Analysis of fluopyram 41.7% SC by HPLC[J]. Agrochemicals, 2020, 59(1): 27-28.(in Chinese with English abstract) | |
[19] | 李文卓, 钱圆, MATSUMOTO H, 等. 气相色谱-串联质谱检测蔬菜中氟吡菌酰胺及其代谢物残留[J]. 农药学学报, 2016, 18(6): 759-764. |
LI W Z, QIAN Y, MATSUMOTO H, et al. Simultaneous determination of fluopyram and its metabolite in vegetables using gas chromatography-tandem mass spectrometry[J]. Chinese Journal of Pesticide Science, 2016, 18(6): 759-764.(in Chinese with English abstract) | |
[20] | 李珊, 孙志洪, 郭伟伟, 等. 气相色谱-三重四级杆串联质谱法测定土壤中氟啶虫酰胺、氟吡菌酰胺、唑虫酰胺、杀虫脲和氟虫脲[J]. 中国测试, 2022, 48(6): 64-68. |
LI S, SUN Z H, GUO W W, et al. Determination of flutamide, flupirimide, azolomide, chlorfenuron and flufenuron in soil by gas chromatography tandem mass spectrometry[J]. China Measurement & Test, 2022, 48(6): 64-68.(in Chinese with English abstract) | |
[21] | 范金平, 张盈, 魏进, 等. QuEChERS-超高效液相色谱-串联质谱法同时测定芒果中氟吡菌酰胺、肟菌酯及其代谢物残留量[J]. 农药, 2020, 59(7): 516-522. |
FAN J P, ZHANG Y, WEI J, et al. Determination of fluopyram, trifloxystrobin and its metabolite in mango by QuEChERS-UHPLC-MS/MS[J]. Agrochemicals, 2020, 59(7): 516-522.(in Chinese with English abstract) | |
[22] | 马琳, 陈建波, 赵莉, 等. 固相萃取-超高效液相色谱-串联质谱法同时测定果蔬中6种酰胺类农药残留量[J]. 色谱, 2015, 33(10): 1019-1025. |
MA L, CHEN J B, ZHAO L, et al. Determination of six amide pesticide residues in vegetables and fruits by solid phase extraction-ultra high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2015, 33(10): 1019-1025.(in Chinese with English abstract) | |
[23] | CEBALLOS-ALCANTARILLA E, AGULLÓ C, ABAD-SOMOVILLA A, et al. Highly sensitive monoclonal antibody-based immunoassays for the analysis of fluopyram in food samples[J]. Food Chemistry, 2019, 288: 117-126. |
[24] | YOGENDRAIAH MATADHA N, MOHAPATRA S, SIDDAMALLAIAH L. Distribution of fluopyram and tebuconazole in pomegranate tissues and their risk assessment[J]. Food Chemistry, 2021, 358: 129909. |
[25] | TRIPATHY V, SHARMA K K, MOHAPATRA S, et al. Persistence evaluation of fluopyram+tebuconazole residues on mango and pomegranate and their risk assessment[J]. Environmental Science and Pollution Research International, 2022, 29(22): 33180-33190. |
[26] | 吉小凤, 吕文涛, 汪建妹, 等. 超高效液相色谱-串联质谱法测定鲜鸡蛋中氟虫腈及其代谢物残留[J]. 浙江农业学报, 2020, 32(10): 1849-1854. |
JI X F, LV W T, WANG J M, et al. Determination of fipronil and its metabolites in fresh eggs by ultra high performance liquid chromatography-tandem mass spectrometry[J]. Acta Agriculturae Zhejiangensis, 2020, 32(10): 1849-1854.(in Chinese with English abstract) | |
[27] | FU Y, WANG Q S, ZHANG L, et al. Dissipation, occurrence, and risk assessment of 12 pesticides in Dendrobium officinale Kimura et Migo[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112487. |
[28] | 秦世鹏, 胡继业. 马铃薯中氟吡菌胺、氰霜唑及相关代谢物的残留量及膳食风险评估[J]. 农药, 2022, 61(7): 500-506. |
QIN S P, HU J Y. Residues and dietary risk assessment of fluopicolide, cyazofamid and related metabolites in potato[J]. Agrochemicals, 2022, 61(7): 500-506.(in Chinese with English abstract) | |
[29] | 谭菲菲, 高政绪, 高强, 等. 氟吡菌酰胺及其代谢物在烟草种植和加工过程中的降解特征[J]. 中国烟草科学, 2021, 42(5): 69-74. |
TAN F F, GAO Z X, GAO Q, et al. Residue degradation of fluopyram and its metabolites during tobacco planting and processing[J]. Chinese Tobacco Science, 2021, 42(5): 69-74.(in Chinese with English abstract) | |
[30] | CHAWLA S, PATEL D J, PATEL S H, et al. Behaviour and risk assessment of fluopyram and its metabolite in cucumber (Cucumis sativus) fruit and in soil[J]. Environmental Science and Pollution Research, 2018, 25(12): 11626-11634. |
[31] | 林静, 张顺, 蔡挺, 等. QuEChERS-超高效液相色谱-串联质谱技术同时测定大蒜中10种农药残留[J]. 浙江农业学报, 2018, 30(1): 159-166. |
LIN J, ZHANG S, CAI T, et al. Determination of 10 pesticide residues in garlic by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry[J]. Acta Agriculturae Zhejiangensis, 2018, 30(1): 159-166.(in Chinese with English abstract) | |
[32] | DONG B Z, HU J Y. Dissipation and residue determination of fluopyram and tebuconazole residues in watermelon and soil by GC-MS[J]. International Journal of Environmental Analytical Chemistry, 2014, 94(5): 493-505. |
[33] | MOHAPATRA S, SIDDAMALLAIAH L, BUDDIDATHI R, et al. Dissipation kinetics and risk assessment of fluopyram and tebuconazole in mango (Mangifera indica)[J]. International Journal of Environmental Analytical Chemistry, 2018, 98(3): 229-246. |
[34] | PATEL B V, CHAWLA S, GOR H, et al. Residue decline and risk assessment of fluopyram+tebuconazole (400SC) in/on onion (Allium cepa)[J]. Environmental Science and Pollution Research, 2016, 23(20): 20871-20881. |
[35] | FAO. Inventory of evaluations performed by the joint meeting on pesticide residue (JMPR)[DB/OL].[2023-04-11]. https://www.fao.org/pest-and-pesticide-management/guidelines-standards/faowho-joint-meeting-on-pesticide-residues-jmpr/pesticides-evaluated-by-jmpr-jmps/en/. |
[1] | 裘丞军, 侯轩, 陈凯, 吴望君, 周炜, 段友刚. 超高效液相色谱-串联质谱法同时测定畜禽排泄物中15种喹诺酮类药物[J]. 浙江农业学报, 2024, 36(7): 1519-1529. |
[2] | 诸燕, 丁兰, 陈忆乾, 黄秀静, 姜伟伟, 陈东红. 铁皮石斛CLE基因家族鉴定与功能分析[J]. 浙江农业学报, 2024, 36(7): 1583-1590. |
[3] | 褚田芬, 雷玲, 李勤锋, 吴平, 洪文杰, 郑蔚然. 浙江省西瓜中农药残留风险评估[J]. 浙江农业学报, 2024, 36(5): 1153-1160. |
[4] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
[5] | 李镜锐, 陶文扬, 杨颖, 周万怡, 陆胜民, 王阳光. 三种浙产铁皮石斛多糖的结构及免疫功效探究[J]. 浙江农业学报, 2023, 35(8): 1888-1895. |
[6] | 陆兰菲, 赵学平, 马正, 方楠, 骆玉琴, 王晓梅, 叶会, 雷圆, 王强, 张昌朋. 固相萃取-高效液相色谱-质谱联用法测定铁皮石斛中2,4-表芸苔素内酯残留[J]. 浙江农业学报, 2023, 35(8): 1896-1903. |
[7] | 叶会, 陈瑜婷, 骆玉琴, 范续艳, 雷圆, 陆兰菲, 郝培培, 程有普, 张昌朋. 两种剂型吡唑醚菌酯在草莓中的残留及消解动态[J]. 浙江农业学报, 2023, 35(7): 1720-1728. |
[8] | 张春荣, 郭钤, 孔丽萍, 吴园园, 林琴, 许振岚, 赵学平, 汤涛. 嘧菌酯在杨梅中的残留行为及膳食暴露风险评估[J]. 浙江农业学报, 2023, 35(4): 942-951. |
[9] | 孙凤婷, 许振岚, 朱作艺, 张春荣, 汤涛, 赵学平, 盛清, 王强. 铁皮石斛的黄酮类成分测定及其生物可及性研究[J]. 浙江农业学报, 2023, 35(11): 2710-2719. |
[10] | 吉小凤, 王小骊, 吕文涛, 周忠静, 吴钰潇, 杨华. 加速溶剂萃取-超高效液相色谱-串联质谱法测定婴幼儿配方乳粉中17种磺胺类药物残留[J]. 浙江农业学报, 2023, 35(1): 175-183. |
[11] | 张春荣, 郭钤, 孔丽萍, 吴园园, 林琴, 许振岚, 汤涛. 固相萃取/超高效液相色谱-串联质谱法测定白术中井冈霉素和丙环唑残留量[J]. 浙江农业学报, 2022, 34(12): 2750-2758. |
[12] | 孙彩霞, 欧阳志周, 刘玉红, 于国光. 西兰花中3种杀菌剂的残留动态与风险评估[J]. 浙江农业学报, 2021, 33(7): 1292-1299. |
[13] | 王娣, 狄珊珊, 王新全, 张昌朋, 王祥云, 王萌, 章程辉. 豇豆不同生长时期施用毒死蜱的膳食风险[J]. 浙江农业学报, 2021, 33(6): 1104-1109. |
[14] | 陈文强, 汪小福, 陈笑芸, 彭城, 徐俊锋, 蔡健. 基于ITS2和SNP技术鉴定浙江铁皮石斛的初步研究[J]. 浙江农业学报, 2021, 33(1): 69-76. |
[15] | 王娣, 狄珊珊, 王新全, 张昌朋, 王祥云, 王萌. 丁硫克百威在豇豆不同时期施用的降解代谢研究[J]. 浙江农业学报, 2020, 32(11): 2050-2058. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||