[1] |
斯金平, 王琦, 刘仲健, 等. 铁皮石斛产业化关键科学与技术的突破[J]. 中国中药杂志, 2017, 42(12): 2223-2227.
|
|
SI J P, WANG Q, LIU Z J, et al. Breakthrough in key science and technologies in Dendrobium catenatum industry[J]. China Journal of Chinese Materia Medica, 2017, 42(12): 2223-2227.(in Chinese with English abstract)
|
[2] |
斯金平, 张媛, 罗毅波, 等. 石斛与铁皮石斛关系的本草考证[J]. 中国中药杂志, 2017, 42(10): 2001-2005.
|
|
SI J P, ZHANG Y, LUO Y B, et al. Herbal textual research on relationship between Chinese medicine“Shihu” (Dendrobium spp.) and “Tiepi Shihu” (D. catenatum)[J]. China Journal of Chinese Materia Medica, 2017, 42(10): 2001-2005.(in Chinese with English abstract)
|
[3] |
STAHL Y, SIMON R. Peptides and receptors controlling root development[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2012, 367(1595): 1453-1460.
|
[4] |
KINOSHITA A, NAKAMURA Y, SASAKI E, et al. Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related (CLE) peptides in Arabidopsis thaliana and Oryza sativa[J]. Plant & Cell Physiology, 2007, 48(12): 1821-1825.
|
[5] |
HOBE M, MÜLLER R, GRÜNEWALD M, et al. Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis[J]. Development Genes and Evolution, 2003, 213(8): 371-381.
|
[6] |
STAHL Y, WINK R H, INGRAM G C, et al. A signaling module controlling the stem cell niche in Arabidopsis root meristems[J]. Current Biology, 2009, 19(11): 909-914.
|
[7] |
RICHARDS S, WINK R H, SIMON R. Mathematical modelling of WOX5-and CLE40-mediated columella stem cell homeostasis in Arabidopsis[J]. Journal of Experimental Botany, 2015, 66(17): 5375-5384.
|
[8] |
CASAMITJANA-MARTı’NEZ E, HOFHUIS H F, XU J, et al. Root-specific CLE19 overexpression and the Sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance[J]. Current Biology, 2003, 13(16): 1435-1441.
|
[9] |
FIERS M, HAUSE G, BOUTILIER K, et al. Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem[J]. Gene, 2004, 327(1): 37-49.
|
[10] |
CHU H W, LIANG W Q, LI J, et al. A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice[J]. Journal of Experimental Botany, 2013, 64(17): 5359-5369.
|
[11] |
KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
|
[12] |
ROGERS S O, BENDICH A J. Extraction of DNA from plant tissues[M]// Plant Molecular Biology Manual. Dordrecht: Springer Netherlands, 1989: 73-83.
|
[13] |
TRUERNIT E, BAUBY H, DUBREUCQ B, et al. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of Phloem development and structure in Arabidopsis[J]. The Plant Cell, 2008, 20(6): 1494-1503.
|
[14] |
ZHANG X R, HENRIQUES R, LIN S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2): 641-646.
|
[15] |
MÜLLER R, BLECKMANN A, SIMON R. The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1[J]. The Plant Cell, 2008, 20(4): 934-946.
|
[16] |
DEPUYDT S, RODRIGUEZ-VILLALON A, SANTUARI L, et al. Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor-like kinase BAM3[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 7074-7079.
|
[17] |
SHIMIZU N, ISHIDA T, YAMADA M, et al. BAM 1 and receptor-like protein kinase 2 constitute a signaling pathway and modulate cle peptide-triggered growth inhibition in Arabidopsis root[J]. The New Phytologist, 2015, 208(4): 1104-1113.
|
[18] |
HAZAK O, BRANDT B, CATTANEO P, et al. Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature[J]. EMBO Reports, 2017,18: 1367-1381.
|
[19] |
HIRAKAWA Y, KONDO Y, FUKUDA H. Establishment and maintenance of vascular cell communities through local signaling[J]. Current Opinion in Plant Biology, 2011, 14(1):17-23.
|
[20] |
OELKERS K, GOFFARD N, WEILLER G F, et al. Bioinformatic analysis of the CLE signaling peptide family[J]. BMC Plant Biology, 2008, 8: 1.
|
[21] |
KANG J K, WANG X N, ISHIDA T, et al. A group of CLE peptides regulates de novo shoot regeneration in Arabidopsis thaliana[J]. The New Phytologist, 2022, 235(6): 2300-2312.
|
[22] |
ZHANG Y, TAN S Y, GAO Y H, et al. CLE42 delays leaf senescence by antagonizing ethylene pathway in Arabidopsis[J]. The New Phytologist, 2022, 235(2): 550-562.
|
[23] |
ZHANG Z L, LIU C, LI K, et al. CLE14 functions as a “brake signal” to suppress age-dependent and stress-induced leaf senescence by promoting JUB1-mediated ROS scavenging in Arabidopsis[J]. Molecular Plant, 2022, 15(1): 179-188.
|
[24] |
TAKAHASHI F, SUZUKI T, OSAKABE Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700): 235-238.
|
[25] |
石岩, 张天恩, 朱百慧, 等. 苹果多肽编码基因MhCLE8调控花青苷积累的功能研究[J]. 园艺学报, 2023, 50(12): 2541-2550.
|
|
SHI Y, ZHANG T E, ZHU B H, et al. Function study of peptide coding gene MhCLE8 in regulating anthocyanin accumulation in apple(Malus×domestica)[J]. Acta Horticulturae Sinica, 2023, 50(12): 2541-2550.(in Chinese with English abstract)
|
[26] |
程梦雨, 李小强, 王鹏, 等. 蔷薇科果树CLE多肽家族的鉴定及梨PbrCLE31调控花粉管生长功能分析[J]. 南京农业大学学报, 2021, 44(5): 850-861.
|
|
CHENG M Y, LI X Q, WANG P, et al. Identification of CLE peptide family in Rosaceae fruit trees and regulation of pollen tube growth by PbrCLE31 in pear[J]. Journal of Nanjing Agricultural University, 2021, 44(5): 850-861.(in Chinese with English abstract)
|
[27] |
MIYAWAKI K, TABATA R, SAWA S. Evolutionarily conserved CLE peptide signaling in plant development, symbiosis, and parasitism[J]. Current Opinion in Plant Biology, 2013, 16(5): 598-606.
|