浙江农业学报 ›› 2021, Vol. 33 ›› Issue (11): 2001-2008.DOI: 10.3969/j.issn.1004-1524.2021.11.01
李红英(), 高延武, 于茹恩, 王政博, 李雪萍, 刘龙昌*(
)
收稿日期:
2020-12-11
出版日期:
2021-11-25
发布日期:
2021-11-26
通讯作者:
刘龙昌
作者简介:
*刘龙昌,E-mail: snowliu@126.com基金资助:
LI Hongying(), GAO Yanwu, YU Ru’en, WANG Zhengbo, LI Xueping, LIU Longchang*(
)
Received:
2020-12-11
Online:
2021-11-25
Published:
2021-11-26
Contact:
LIU Longchang
摘要:
Argonaute2(AGO2)在植物抗病和发育过程中发挥重要作用。为创制拟南芥ago2核苷酸插入/缺失突变体材料,分析了拟南芥AGO2基因结构,选择其外显子上3个靶点构建了CRISPR_Cas9基因编辑载体,并通过农杆菌介导的花序浸染法转化野生型拟南芥,利用潮霉素对T0代种子进行筛选,获得62株T1代抗性苗;然后提取T1代抗性苗DNA,进行潮霉素特异引物PCR扩增检测,确定获得53棵转基因阳性苗。随机选择10株T1代阳性苗,扩增包含靶点的基因片段进行测序,结果显示,在第1个靶点附近6株苗产生了编辑,第2靶点附近10株苗全部成功编辑,第3个靶点未发生编辑。编辑位点附近产生了多种编辑形式,以PAM前删除或者增加1个碱基的形式出现频率最高,也有删除大于10碱基的编辑形式,最长可删除106个碱基。这些突变株系的获得为深入研究拟南芥AGO2的功能提供了丰富的遗传材料。
中图分类号:
李红英, 高延武, 于茹恩, 王政博, 李雪萍, 刘龙昌. 利用CRISPR_Cas9技术创建拟南芥Argonaute2基因缺失突变体[J]. 浙江农业学报, 2021, 33(11): 2001-2008.
LI Hongying, GAO Yanwu, YU Ru’en, WANG Zhengbo, LI Xueping, LIU Longchang. Argonaute2 mutants in Arabidopsis created by CRISPR_Cas9 technology[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2001-2008.
引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') | 引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') |
---|---|---|---|
AtAGO2-T1F | GTCAATGGAGAGAGGTGGTTATCG | gRNA-R | CGGAGGAAAATTCCATCCAC |
AtAGO2-T1R | AAACCGATAACCACCTCTCTCCAT | Uctcg-B1' | TTCAGAGGTCTCTCTCGACTAGTGGAATCGGCAGCAAAGG |
AtAGO2-T2F | GTCATCCGTCCACCAGCACCACCG | gRctga-B2 | AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC |
AtAGO2-T2R | AAACCGGTGGTGCTGGTGGACGGA | Uctga-B2' | TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG |
AtAGO2-T3F | ATTGCCACAACTCCGCCTCTATC | gRaaga-B3 | AGCGTGGGTCTCGTCTTGGTCCATCCACTCCAAGCTC |
AtAGO2-T3R | AAACGATAGAGGCGGAGTTGTGG | Uaaga-B3' | TTCAGAGGTCTCTAAGACACTGGAATCGGCAGCAAAGG |
C9AtAGO2-seq-F | GCTTTGTTTCACTCAGTGTTTCC | gRcggt-BL | AGCGTGGGTCTCGACCGACGCGTCCATCCACTCCAAGCTC |
C9-AtAGO2-seq-R | AACCTTCTTGGTAGGAATTTCTC | Hyg-F | ATCCTGCAAGCTCCGGATGCCTC |
U-F | CTCCGTTTTACCTGTGGAATCG | Hyg-R | CGTCTCCGACCTGATGCAGCTCT |
表1 引物序列
Table 1 Sequence of primers
引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') | 引物名称 Primer ID | 引物序列(5'→3') Nucleotide sequence (5'→3') |
---|---|---|---|
AtAGO2-T1F | GTCAATGGAGAGAGGTGGTTATCG | gRNA-R | CGGAGGAAAATTCCATCCAC |
AtAGO2-T1R | AAACCGATAACCACCTCTCTCCAT | Uctcg-B1' | TTCAGAGGTCTCTCTCGACTAGTGGAATCGGCAGCAAAGG |
AtAGO2-T2F | GTCATCCGTCCACCAGCACCACCG | gRctga-B2 | AGCGTGGGTCTCGTCAGGGTCCATCCACTCCAAGCTC |
AtAGO2-T2R | AAACCGGTGGTGCTGGTGGACGGA | Uctga-B2' | TTCAGAGGTCTCTCTGACACTGGAATCGGCAGCAAAGG |
AtAGO2-T3F | ATTGCCACAACTCCGCCTCTATC | gRaaga-B3 | AGCGTGGGTCTCGTCTTGGTCCATCCACTCCAAGCTC |
AtAGO2-T3R | AAACGATAGAGGCGGAGTTGTGG | Uaaga-B3' | TTCAGAGGTCTCTAAGACACTGGAATCGGCAGCAAAGG |
C9AtAGO2-seq-F | GCTTTGTTTCACTCAGTGTTTCC | gRcggt-BL | AGCGTGGGTCTCGACCGACGCGTCCATCCACTCCAAGCTC |
C9-AtAGO2-seq-R | AACCTTCTTGGTAGGAATTTCTC | Hyg-F | ATCCTGCAAGCTCCGGATGCCTC |
U-F | CTCCGTTTTACCTGTGGAATCG | Hyg-R | CGTCTCCGACCTGATGCAGCTCT |
图2 AtAGO2 3个靶点sgRNA表达盒PCR扩增产物琼脂糖凝胶电泳检测 M,DL 2000 marker;T1,靶点1;T2,靶点2;T3,靶点3。
Fig.2 Gel electrophoresis detection of PCR amplification products of three target sgRNA expression cassettes M, DL 2000 marker; T1, Target site 1; T2, Target site 2; T3, Target site 3.
图3 pCC9AtAGO2质粒靶位点序列与载体结构示意图 a,pCC9AtAGO2质粒靶位点测序;b,pCC9AtAGO2载体结构示意图。
Fig.3 Sequence of target sites and structure of pCC9AtAGO2 vector a, Sequencing of target sites of pCC9AtAGO2; b, Structure of pCC9AtAGO2.
图4 部分抗性苗潮霉素基因特异片段PCR扩增检测 M,DL 2000 DNA marker;1~19,转基因拟南芥潮霉素抗性阳性苗;wt,野生型。
Fig.4 PCR amplification detection of hygromycin B gene in T0 transgenic plants with hygromycin B tolerance M, DL 2000 DNA marker; 1-19, Positive seedlings of transgenic lines with hygromycin B tolerance; wt, Wild type.
图5 部分转基因T1代植株AGO2基因编辑靶点所在DNA片段PCR扩增结果 M,DL 2000 DNA marker;#2~#54,转基因T1代植株。
Fig.5 PCR amplification of AGO2 gene fragments containing editing target sites of selected transgenic lines M,DL 2000 DNA marker; #2-#54, T1 transgenic plants.
图6 部分转基因T1代植株AGO2靶点编辑形式 a,靶点1编辑形式;b,靶点2编辑形式。
Fig.6 Editing forms of AGO2 target site of selected T1 transgenic progenies a, Editing forms of target T1; b, Editing forms of target T2.
[1] |
USLU V V, WASSENEGGER M. Critical view on RNA silencing-mediated virus resistance using exogenously applied RNA[J]. Current Opinion in Virology, 2020, 42:18-24.
DOI URL |
[2] |
DING S W. RNA-based antiviral immunity[J]. Nature Reviews Immunology, 2010, 10(9):632-644.
DOI URL |
[3] |
ZHU L Z, JIANG H L, SHEONG F K, et al. Understanding the core of RNA interference: the dynamic aspects of Argonaute-mediated processes[J]. Progress in Biophysics and Molecular Biology, 2017, 128:39-46.
DOI URL |
[4] |
SHEU-GRUTTADAURIA J, MACRAE I J. Structural foundations of RNA silencing by argonaute[J]. Journal of Molecular Biology, 2017, 429(17):2619-2639.
DOI URL |
[5] |
FÁTYOL K, LUDMAN M, BURGYÁN J. Functional dissection of a plant Argonaute[J]. Nucleic Acids Research, 2016, 44(3):1384-1397.
DOI URL |
[6] |
FANG X F, QI Y J. RNAi in plants: an argonaute-centered view[J]. The Plant Cell, 2016, 28(2):272-285.
DOI URL |
[7] |
CARBONELL A, CARRINGTON J C. Antiviral roles of plant ARGONAUTES[J]. Current Opinion in Plant Biology, 2015, 27:111-117.
DOI URL |
[8] |
BROSSEAU C, MOFFETT P. Functional and genetic analysis identify a role for Arabidopsis ARGONAUTE5 in antiviral RNA silencing[J]. The Plant Cell, 2015, 27(6):1742-1754.
DOI URL |
[9] |
ZHU H L, HU F Q, WANG R H, et al. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development[J]. Cell, 2011, 145(2):242-256.
DOI URL |
[10] |
BARRANGOU R, DOUDNA J A. Applications of CRISPR technologies in research and beyond[J]. Nature Biotechnology, 2016, 34(9):933-941.
DOI URL |
[11] |
HARRISON M M, JENKINS B V, O’CONNOR-GILES K M, et al. A CRISPR view of development[J]. Genes & Development, 2014, 28(17):1859-1872.
DOI URL |
[12] | 景润春, 卢洪. CRISPR/Cas9基因组定向编辑技术的发展与在作物遗传育种中的应用[J]. 中国农业科学, 2016, 49(7):1-11. |
JING R C, LU H. The development of CRISPR/Cas9 system and its application in crop genome editing[J]. Scientia Agricultura Sinica, 2016, 49(7):1-11.(in Chinese with English abstract) | |
[13] | 郭建秋, 雷全奎, 杨小兰, 等. 植物突变体库的构建及突变体检测研究进展[J]. 河南农业科学, 2010, 39(6):150-155. |
GUO J Q, LEI Q K, YANG X L, et al. Research progress of plant mutant library construction and mutant detection[J]. Journal of Henan Agricultural Sciences, 2010, 39(6):150-155.(in Chinese) | |
[14] |
VAUCHERET H. Plant ARGONAUTES[J]. Trends in Plant Science, 2008, 13(7):350-358.
DOI URL |
[15] |
JEAN M. The multilayer’s control of ARGONAUTE 1 contents[J]. Molecular Plant, 2020, 13(1):1-3.
DOI URL |
[16] |
ZHANG X M, ZHAO H W, GAO S, et al. Arabidopsis argonaute 2 regulates innate immunity via miRNA393-mediated silencing of a Golgi-localized SNARE gene, MEMB12[J]. Molecular Cell, 2011, 42(3):356-366.
DOI URL |
[17] |
HU P, ZHAO H W, ZHU P, et al. Dual regulation of Arabidopsis AGO2 by arginine methylation[J]. Nature Communications, 2019, 10:844.
DOI URL |
[18] |
WANG H Y, LIU C, REN Y C, et al. An RNA-binding protein MUG13.4 interacts with AtAGO2 to modulate salinity tolerance in Arabidopsis[J]. Plant Science, 2019, 288:110218.
DOI URL |
[19] |
XIE X R, MA X L, ZHU Q L, et al. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing[J]. Molecular Plant, 2017, 10(9):1246-1249.
DOI URL |
[20] |
ENGLER C, GRUETZNER R, KANDZIA R, et al. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes[J]. PLoS One, 2009, 4(5):e5553.
DOI URL |
[21] |
ZHANG X R, HENRIQUES R, LIN S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2):641-646.
DOI URL |
[22] |
WANG X B, JOVEL J, UDOMPORN P, et al. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana[J]. The Plant Cell, 2011, 23(4):1625-1638.
DOI URL |
[23] |
WU K X, WU Y D, ZHANG C W, et al. Simultaneous silencing of two different Arabidopsis genes with a novel virus-induced gene silencing vector[J]. Plant Methods, 2021, 17(1):6.
DOI URL |
[24] |
ODOKONYERO D, MENDOZA M R, ALVARADO V Y, et al. Transgenic down-regulation of ARGONAUTE2 expression in Nicotiana benthamiana interferes with several layers of antiviral defenses[J]. Virology, 2015, 486:209-218.
DOI URL |
[25] |
MA X L, ZHANG Q Y, ZHU Q L, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8):1274-1284.
DOI URL |
[26] | 原文霞, 王栩鸣, 李冬月, 等. 利用CRISPR/Cas9技术靶向编辑水稻基因[J]. 浙江农业学报, 2017, 29(5):685-693. |
YUAN W X, WANG X M, LI D Y, et al. Application of the technology of CRISPR/Cas9 edit rice gene[J]. Acta Agriculturae Zhejiangensis, 2017, 29(5):685-693.(in Chinese with English abstract) | |
[27] | ZHENG S Y, LI J, MA L, et al. OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(15):7549-7558. |
[28] |
LUDMAN M, BURGYÁN J, FÁTYOL K. Crispr/Cas9 mediated inactivation of argonaute 2 reveals its differential involvement in antiviral responses[J]. Scientific Reports, 2017, 7:1010.
DOI URL |
[1] | 谭晓菁, 王忠华, 吴月燕, 郑二松, 徐如梦, 陈剑平, 王栩鸣, 严成其. 基因编辑技术在水稻抗病基因与育种研究中的应用进展[J]. 浙江农业学报, 2021, 33(10): 1982-1990. |
[2] | 朱森林, 梅忠, 邢承华. 缺磷抑制拟南芥对镉的吸收[J]. 浙江农业学报, 2020, 32(5): 804-809. |
[3] | 贾小平, 王振山, 朱学海, 杨德智, 寇淑君, 刘星星. 糜子矮秆突变体“819”矮秆基因的遗传学分析[J]. 浙江农业学报, 2020, 32(1): 20-27. |
[4] | 张博, 贾小平, 杨德智, 赵渊, 戴凌峰, 寇淑君, 张小梅, 侯典云, 朱学海. 糜子矮秆突变体778农艺性状调查及其对GA的敏感性分析[J]. 浙江农业学报, 2019, 31(5): 688-694. |
[5] | 何春梅, 王娟, 董瑞, 刘春晓, 刘强, 关海英, 汪黎明, 徐相波, 刘铁山. 玉米ZmGS5基因的克隆及其对转基因拟南芥种子发育的影响[J]. 浙江农业学报, 2019, 31(4): 513-518. |
[6] | 郭丹丹, 杨清华, 朱丹华, 金杭霞. 碱蓬SgP5CS基因过表达提高拟南芥耐旱性[J]. 浙江农业学报, 2019, 31(4): 572-578. |
[7] | 汪燕, 石海春, 余学杰, 赵长云, 柯永培. 玉米细胞核雄性不育突变体K305ms的生理生化分析[J]. 浙江农业学报, 2018, 30(8): 1281-1287. |
[8] | 徐秀红, 吕桂华, 郭国锦, 陈坚剑. 玉米高无机磷突变体的选育和特性研究[J]. 浙江农业学报, 2018, 30(8): 1288-1294. |
[9] | 邓子兵, 邱梁堃, 马建忠. 拟南芥AFP4的克隆、原核表达和纯化及其与ABI5的互作[J]. 浙江农业学报, 2018, 30(12): 2072-2080. |
[10] | 安玉兰, 翟克清, 杨峰, 雷玥, 胡克玲, 甘德芳, 汪承刚. 过表达CsMADSs拟南芥的表型变化及CsMADSs表达水平[J]. 浙江农业学报, 2018, 30(10): 1671-1679. |
[11] | 原文霞, 王栩鸣, 李冬月, 周洁, 严成其, 陈剑平. 利用CRISPR/Cas9技术靶向编辑水稻基因[J]. 浙江农业学报, 2017, 29(5): 685-693. |
[12] | 沈春修. 水稻LOC_Os10g05490位点冷胁迫条件下表达分析及CRISPR/Cas9定向编辑[J]. 浙江农业学报, 2017, 29(2): 177-185. |
[13] | 方敏彦1,章明2,孔维亮1. 体胚诱变结缕草属突变体形态特征及生长特性评价[J]. 浙江农业学报, 2016, 28(2): 269-. |
[14] | 刘丹, 吴凤芝. 转Pal基因拟南芥对根际土壤细菌群落的影响[J]. 浙江农业学报, 2016, 28(12): 2068-2075. |
[15] | 赵莺婕1,刘春林2,阮颖1,*. 拟南芥AtSb10基因的克隆及其过表达转基因株系的获得[J]. 浙江农业学报, 2015, 27(9): 1550-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2664
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1828
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||