浙江农业学报 ›› 2021, Vol. 33 ›› Issue (10): 1982-1990.DOI: 10.3969/j.issn.1004-1524.2021.10.22
谭晓菁1,2(), 王忠华1, 吴月燕1, 郑二松2, 徐如梦2, 陈剑平2, 王栩鸣2,*(
), 严成其1,3,*(
)
收稿日期:
2020-06-10
出版日期:
2021-10-25
发布日期:
2021-11-02
通讯作者:
王栩鸣,严成其
作者简介:
王栩鸣,E-mail: xmwang@zaas.ac.cn基金资助:
TAN Xiaojing1,2(), WANG Zhonghua1, WU Yueyan1, ZHENG Ersong2, XU Rumeng2, CHEN Jianping2, WANG Xuming2,*(
), YAN Chengqi1,3,*(
)
Received:
2020-06-10
Online:
2021-10-25
Published:
2021-11-02
Contact:
WANG Xuming,YAN Chengqi
摘要:
水稻是我国重要的粮食作物之一,更是世界上30多亿人的主要食物来源。近几十年,各种病原菌、虫害、气候变化以及其他不利环境因素层出不穷,对全球粮食安全生产构成了严重威胁。对于高产抗病水稻植株的研究需求越发迫切,但传统育种手段过程繁琐复杂、效率不高,因此利用基因编辑技术推进水稻抗病育种进程成为研究重点。其中以CRISPR系统、锌指核酸酶(ZFN)、转录激活样效应因子核酸酶(TALEN)、单碱基编辑系统(BE)和引导编辑系统(PE)等为代表的技术,在对水稻进行高效定点基因编辑,在缩短育种周期,培育综合抗性强的水稻品系方面起到了较大作用,并在基因研究、作物遗传改良等方面展示出了巨大的潜力。本文对基因编辑技术的原理,基因编辑技术的发展,以及基因编辑技术在水稻抗病基因及育种研究中的应用进展进行了综述,并展望了基因编辑技术在抗病育种中的应用前景。
中图分类号:
谭晓菁, 王忠华, 吴月燕, 郑二松, 徐如梦, 陈剑平, 王栩鸣, 严成其. 基因编辑技术在水稻抗病基因与育种研究中的应用进展[J]. 浙江农业学报, 2021, 33(10): 1982-1990.
TAN Xiaojing, WANG Zhonghua, WU Yueyan, ZHENG Ersong, XU Rumeng, CHEN Jianping, WANG Xuming, YAN Chengqi. Application progress of gene editing techniques in rice disease-resistant genes and breeding research[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1982-1990.
[1] |
BIRLA D S, MALIK K, SAINGER M, et al. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.)[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(11):2455-2481.
DOI URL |
[2] |
DENG Z H, QIN L, GAO Y, et al. From early domesticated rice of the middle Yangtze basin to millet, rice and wheat agriculture: archaeobotanical macro-remains from baligang, Nanyang basin, central China (6700-500 BC)[J]. PLoS One, 2015, 10(10):e0139885.
DOI URL |
[3] | 贾奎华, 韩志远. 水稻高产栽培技术及病虫害防治分析[J]. 农民致富之友, 2017(24):29. |
JIA K H, HAN Z Y. Analysis of high-yield cultivation technology of rice and prevention of diseases and insect pests[J]. Friends of Farmers, 2017(24):29.(in Chinese) | |
[4] | ABROL D P, SHANKAR U. Pesticides, food safety and integrated pest management[M]//PESHIN, RAJINDER. Integrated Pest Management. Dordrecht: Springer Netherlands, 2014: 167-199. |
[5] | MORTON J, DAVIS M W, JORGENSEN E M, et al. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(44):16370-16375. |
[6] |
SUN N, ZHAO H M. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing[J]. Biotechnology and Bioengineering, 2013, 110(7):1811-1821.
DOI URL |
[7] | 李希陶, 刘耀光. 基因组编辑技术在水稻功能基因组和遗传改良中的应用[J]. 生命科学, 2016, 28(10):1243-1249. |
LI X T, LIU Y G. Genome editing technology for functional genomics and genetic improvement in rice[J]. Chinese Bulletin of Life Sciences, 2016, 28(10):1243-1249.(in Chinese with English abstract) | |
[8] | 秦瑞英, 魏鹏程. Prime editing引导植物基因组精确编辑新局面[J]. 遗传, 2020, 42(6):519-523. |
QIN R Y, WEI P C. Prime editing creates a novel dimension of plant precise genome editing[J]. Hereditas, 2020, 42(6):519-523.(in Chinese with English abstract) | |
[9] | 朱玉昌, 郑小江, 胡一兵. 基因编辑技术的方法、原理及应用[J]. 生物医学, 2015, 5(3):32-41. |
ZHU Y C, ZHENG X J, HU Y B. Methods, principles and application of gene editing[J]. Hans Journal of Biomedicine, 2015, 5(3):32-41.(in Chinese)
DOI URL |
|
[10] |
MULLER H J. Artificial transmutation of the gene[J]. Science, 1927, 66(1699):84-87.
DOI URL |
[11] |
AUERBACH C, ROBSON J M, CARR J G. The chemical production of mutations[J]. Science, 1947, 105(2723):243-247.
DOI URL |
[12] | SCHERER S, DAVIS R W. Replacement of chromosome segments with altered DNA sequences constructed in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(10):4951-4955. |
[13] | ROTHSTEIN R J. 12] One-step gene disruption in yeast[J]. Methods in Enzymology, 1983, 101:202-211. |
[14] |
SMITHIES O, GREGG R G, BOGGS S S, et al. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination[J]. Nature, 1985, 317(6034):230-234.
DOI URL |
[15] |
THOMAS K R, FOLGER K R, CAPECCHI M R. High frequency targeting of genes to specific sites in the mammalian genome[J]. Cell, 1986, 44(3):419-428.
DOI URL |
[16] |
ESVELT K M, WANG H H. Genome-scale engineering for systems and synthetic biology[J]. Molecular Systems Biology, 2013, 9(1):641.
DOI URL |
[17] | 肖安, 胡莹莹, 王唯晔, 等. 人工锌指核酸酶介导的基因组定点修饰技术[J]. 遗传, 2011, 33(7):3-21. |
XIAO A, HU Y Y, WANG W Y, et al. Progress in zinc finger nuclease engineering for targeted genome modification[J]. Hereditas, 2011, 33(7):3-21.(in Chinese with English abstract) | |
[18] |
CHEN K L, WANG Y P, ZHANG R, et al. CRISPR/cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 2019, 70:667-697.
DOI URL |
[19] |
KLUG A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation[J]. Annual Review of Biochemistry, 2010, 79:213-231.
DOI URL |
[20] |
BILICHAK A, SASTRY-DENT L, SRIRAM S, et al. Genome editing in wheat microspores and haploid embryos mediated by delivery of ZFN proteins and cell-penetrating peptide complexes[J]. Plant Biotechnology Journal, 2020, 18(5):1307-1316.
DOI URL |
[21] |
RÖMER P, HAHN S, JORDAN T, et al. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene[J]. Science, 2007, 318(5850):645-648.
DOI URL |
[22] | 周金伟, 王灵慧, 申义君, 等. 类转录激活因子效应物核酸酶(TALENs)的构建及其在基因组定点修饰中的应用[J]. 中国细胞生物学学报, 2013, 35(11):1672-1680. |
ZHOU J W, WANG L H, SHEN Y J, et al. The construction of transcription activator-like effector nucleases(TALENs) and its application in the genome fixed-point modification[J]. Chinese Journal of Cell Biology, 2013, 35(11):1672-1680.(in Chinese with English abstract) | |
[23] |
ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12):5429-5433.
DOI URL |
[24] |
MOJICA F J M, DÍEZ-VILLASEÑOR C, SORIA E, et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria[J]. Molecular Microbiology, 2000, 36(1):244-246.
DOI URL |
[25] |
GRISSA I, VERGNAUD G, POURCEL C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats[J]. BMC Bioinformatics, 2007, 8(1):1-10.
DOI URL |
[26] |
ZHANG Y X, MALZAHN A A, SRETENOVIC S, et al. The emerging and uncultivated potential of CRISPR technology in plant science[J]. Nature Plants, 2019, 5(8):778-794.
DOI URL |
[27] | 刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报, 2019, 40(5):38-49. |
LIU Y G, LI G S, ZHANG Y L, et al. Current advances on CRISPR/Cas genome editing technologies in plants[J]. Journal of South China Agricultural University, 2019, 40(5):38-49.(in Chinese with English abstract) | |
[28] | KHATODIA S, BHATOTIA K, PASSRICHA N, et al. The CRISPR/cas genome-editing tool: application in improvement of crops[J]. Frontiers in Plant Science, 2016, 7:506. |
[29] |
MIGLANI G S. Genome editing in crop improvement: present scenario and future prospects[J]. Journal of Crop Improvement, 2017, 31(4):453-559.
DOI URL |
[30] |
DOUDNA J A, CHARPENTIER E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213):1258096.
DOI URL |
[31] |
MAO Y F, BOTELLA J R, LIU Y G, et al. Gene editing in plants: progress and challenges[J]. National Science Review, 2019, 6(3):421-437.
DOI URL |
[32] | GUO J C, TANG Y D, ZHAO K, et al. Highly efficient CRISPR/Cas9-mediated homologous recombination promotes the rapid generation of bacterial artificial chromosomes of pseudorabies virus[J]. Frontiers in Microbiology, 2016, 7:2110. |
[33] |
WALTON R T, CHRISTIE K A, WHITTAKER M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488):290-296.
DOI URL |
[34] |
ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771.
DOI URL |
[35] |
HU X X, WANG C, LIU Q, et al. Targeted mutagenesis in rice using CRISPR-Cpf1 system[J]. Journal of Genetics and Genomics, 2017, 44(1):71-73.
DOI URL |
[36] |
TANG X, LOWDER L G, ZHANG T, et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants[J]. Nature Plants, 2017, 3:17018.
DOI URL |
[37] |
XU R F, QIN R Y, LI H, et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system[J]. Plant Biotechnology Journal, 2017, 15(6):713-717.
DOI URL |
[38] |
WANG M G, MAO Y F, LU Y M, et al. Multiplex gene editing in rice using the CRISPR-Cpf1 system[J]. Molecular Plant, 2017, 10(7):1011-1013.
DOI URL |
[39] | 杨平, 陈春莲, 熊运华, 等. 利用基因编辑技术改良水稻性状的研究进展与展望[J]. 江西农业学报, 2019, 31(4):8-12. |
YANG P, CHEN C L, XIONG Y H, et al. Research advance and prospects of using genome editing technology to improve rice characters[J]. Acta Agriculturae Jiangxi, 2019, 31(4):8-12.(in Chinese with English abstract) | |
[40] |
REES H A, LIU D R. Base editing: precision chemistry on the genome and transcriptome of living cells[J]. Nature Reviews Genetics, 2018, 19(12):770-788.
DOI URL |
[41] | 宗媛, 高彩霞. 碱基编辑系统研究进展[J]. 遗传, 2019, 41(9):777-800. |
ZONG Y, GAO C X. Progress on base editing systems[J]. Hereditas, 2019, 41(9):777-800.(in Chinese with English abstract) | |
[42] |
ANZALONE A V, RANDOLPH P B, DAVIS J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785):149-157.
DOI URL |
[43] |
TOWNSEND J A, WRIGHT D A, WINFREY R J, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases[J]. Nature, 2009, 459(7245):442-445.
DOI URL |
[44] | LI H L, NAKANO T, HOTTA A. Genetic correction using engineered nucleases for gene therapy applications[J]. Development, Growth & Differentiation, 2014, 56(1):63-77. |
[45] |
LIN Q P, ZONG Y, XUE C X, et al. Prime genome editing in rice and wheat[J]. Nature Biotechnology, 2020, 38(5):582-585.
DOI URL |
[46] | ZHU X Y, XIONG L Z. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44):17790-17795. |
[47] |
MOIN M, BAKSHI A, MADHAV M S, et al. Cas9/sgRNA-based genome editing and other reverse genetic approaches for functional genomic studies in rice[J]. Briefings in Functional Genomics, 2018, 17(5):339-351.
DOI URL |
[48] |
MISHRA R, JOSHI R K, ZHAO K J. Genome editing in rice: recent advances, challenges, and future implications[J]. Frontiers in Plant Science, 2018, 9:1361.
DOI URL |
[49] |
MACOVEI A, SEVILLA N R, CANTOS C, et al. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus[J]. Plant Biotechnology Journal, 2018, 16(11):1918-1927.
DOI URL |
[50] | 武广珩, 傅仙玉. 利用CRISPR/Cas9技术编辑水稻负调控抗病基因OsEDR1及基因功能分析[J]. 应用与环境生物学报, 2019, 25(6):1375-1380. |
WU G H, FU X Y. Editing rice negative regulation resistance gene OsEDR1 by CRISPR/Cas9 and analysis of its function[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(6):1375-1380.(in Chinese with English abstract) | |
[51] |
KE Y G, KANG Y R, WU M X, et al. Jasmonic acid-involved OsEDS1 signaling in rice-bacteria interactions[J]. Rice, 2019, 12(1):25.
DOI URL |
[52] |
LIU Q N, NING Y S, ZHANG Y X, et al. OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice[J]. The Plant Cell, 2017, 29(2):345-359.
DOI URL |
[53] | 吴涛. OsF3H03g和OsF3H04g在水稻与细菌性条斑病菌互作中的功能研究[D]. 泰安: 山东农业大学, 2019. |
WU T. Functional research of OsF3H03g and OsF3H04g in rice and Xanthomonas oryzae pv. oryzicola interaction[D]. Tai’an: Shandong Agricultural University, 2019. (in Chinese with English abstract) | |
[54] | 杨海河, 毕冬玲, 张玉, 等. 基于CRISPR/Cas9技术的水稻pi21基因编辑材料的创制及稻瘟病抗性鉴定[J]. 分子植物育种, 2017, 15(11):4451-4465. |
YANG H H, BI D L, ZHANG Y, et al. Generation of rice pi21 gene editing lines based on CRISPR/Cas9 technology and evaluation of their blast resistance[J]. Molecular Plant Breeding, 2017, 15(11):4451-4465.(in Chinese with English abstract) | |
[55] | 吴凡, 王月, 陈闽, 等. 基于CRISPR/Cas9技术的水稻抗稻瘟病基因Pita突变体的创制[J]. 植物资源与环境学报, 2020, 29(2):1-7. |
WU F, WANG Y, CHEN M, et al. Creation of mutant of blast resistance gene Pita in Oryza sativa based on CRISPR/Cas9 technology[J]. Journal of Plant Resources and Environment, 2020, 29(2):1-7.(in Chinese with English abstract) | |
[56] |
DELTEIL A, GOBBATO E, CAYROL B, et al. Several wall-associated kinases participate positively and negatively in basal defense against rice blast fungus[J]. BMC Plant Biology, 2016, 16(1):1-10.
DOI URL |
[57] | THAKUR S, SINGH P K, DAS A, et al. Extensive sequence variation in rice blast resistance gene Pi54 makes it broad spectrum in nature[J]. Frontiers in Plant Science, 2015, 6:345. |
[58] |
WANG F J, WANG C L, LIU P Q, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One, 2016, 11(4):e0154027.
DOI URL |
[59] | 王芳权, 范方军, 李文奇, 等. 利用CRISPR/Cas9技术敲除水稻Pi21基因的效率分析[J]. 中国水稻科学, 2016, 30(5):469-478. |
WANG F Q, FAN F J, LI W Q, et al. Knock-out efficiency analysis of Pi21 gene using CRISPR/Cas9 in rice[J]. Chinese Journal of Rice Science, 2016, 30(5):469-478.(in Chinese with English abstract) | |
[60] |
NAWAZ G, USMAN B, PENG H W, et al. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line[J]. Genes, 2020, 11(7):735.
DOI URL |
[61] |
SERVANE B B, MAIK R, MONTSERRAT S, et al. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors[J]. Plant Biotechnology Journal, 2017, 15(3):306-317.
DOI URL |
[62] |
OLIVA R, JI C H, ATIENZA-GRANDE G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nature Biotechnology, 2019, 37(11):1344-1350.
DOI URL |
[63] |
ZHOU J H, PENG Z, LONG J Y, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice[J]. The Plant Journal, 2015, 82(4):632-643.
DOI URL |
[64] |
HONG Y B, LIU Q N, CAO Y R, et al. The OsMPK15 negatively regulates Magnaporthe oryza and Xoo disease resistance via SA and JA signaling pathway in rice[J]. Frontiers in Plant Science, 2019, 10:752.
DOI URL |
[65] | YANG B, SUGIO A, WHITE F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27):10503-10508. |
[66] |
KIM Y A, MOON H, PARK C J. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae[J]. Rice, 2019, 12(1):1-13.
DOI URL |
[67] | BI H H, YANG B. Gene editing with TALEN and CRISPR/cas in rice[J]. Progress in Molecular Biology and Translational Science, 2017, 149:81-98. |
[68] |
REN J, HU X X, WANG K J, et al. Development and application of CRISPR/cas system in rice[J]. Rice Science, 2019, 26(2):69-76.
DOI URL |
[1] | 王灿, 付天岭, 龚思同, 娄飞, 周凯, 代良羽, 刘静, 林大松, 何腾兵. 叶面阻控剂对黔中喀斯特地区水稻Cd富集特征的影响[J]. 浙江农业学报, 2021, 33(9): 1710-1719. |
[2] | 张惠云, 秦丽杰, 贾利. 吉林省水稻生产的碳足迹与水足迹时空变化特征[J]. 浙江农业学报, 2021, 33(6): 974-983. |
[3] | 朱芸, 郭彬, 林义成, 傅庆林, 刘琛, 李凝玉, 李华. 新型矿基土壤调理剂对滨海盐土理化性状和水稻产量的影响[J]. 浙江农业学报, 2021, 33(5): 885-892. |
[4] | 吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687. |
[5] | 厉宝仙, 王保君, 怀燕, 沈亚强, 张红梅, 程旺大. 水稻-红鳌螯虾共作对稻田土壤养分、碳库与稻米品质的影响[J]. 浙江农业学报, 2021, 33(4): 688-696. |
[6] | 刘俊, 朱德泉, 于从羊, 薛康, 张顺, 廖娟. 舀勺型孔轮式水稻精量排种器设计与试验[J]. 浙江农业学报, 2021, 33(4): 739-752. |
[7] | 陈丹, 汤翠凤, 董超, 甘树仙, 李俊, 阿新祥, 张斐斐, 杨雅云, 牛赛赛, 戴陆园. 云南软米地方品种籽粒淀粉品质特性研究[J]. 浙江农业学报, 2021, 33(2): 203-214. |
[8] | 邹文雄, 吴伟, 关亚静, 曹栋栋, 卞晓波, 施德云, 丁丽玲. 水稻种子休眠调控技术研究进展[J]. 浙江农业学报, 2021, 33(2): 369-379. |
[9] | 刘寒, 戴远兴, 吕明芳, 袁正杰, 李静, 严成其, 张恒木. 外源水杨酸对水稻苗期生长与防卫相关基因表达的影响[J]. 浙江农业学报, 2021, 33(10): 1789-1796. |
[10] | 谷建诚, 郭彬, 林义成, 傅庆林, 刘琛, 丁能飞, 李华, 李凝玉. 根表铁膜对水稻镉吸收的影响[J]. 浙江农业学报, 2020, 32(6): 963-970. |
[11] | 夏文建, 秦文婧, 刘佳, 陈晓芬, 张丽芳, 曹卫东, 徐昌旭, 陈静蕊. 长期绿肥利用下红壤性水稻土有机碳和可溶性有机碳的垂直分布特征[J]. 浙江农业学报, 2020, 32(5): 878-885. |
[12] | 邵文奇, 钟平, 董玉兵, 孙春梅, 纪力, 庄春, 陈川, 章安康. 托盘育苗中光温资源差异及其对水稻秧苗素质的影响[J]. 浙江农业学报, 2020, 32(2): 191-199. |
[13] | 杨红云, 罗建军, 孙爱珍, 万颖, 易文龙. 基于图像特征的水稻叶片全氮含量估测模型研究[J]. 浙江农业学报, 2020, 32(12): 2232-2243. |
[14] | 张馨月, 李友发, 刘江宁, 富昊伟. 利用广亲和基因S5-n的功能标记鉴定特殊配组类型杂交种纯度研究[J]. 浙江农业学报, 2020, 32(1): 15-19. |
[15] | 邴静静, 高红梅. 基于SWOT分析的天津市优质稻米产业发展研究--以"小站稻"为例[J]. 浙江农业学报, 2019, 31(8): 1217-1223. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||