浙江农业学报 ›› 2021, Vol. 33 ›› Issue (10): 1789-1796.DOI: 10.3969/j.issn.1004-1524.2021.10.01
刘寒1,2(), 戴远兴1,2, 吕明芳2, 袁正杰2, 李静2, 严成其2, 张恒木2,*(
)
收稿日期:
2021-04-15
出版日期:
2021-10-25
发布日期:
2021-11-02
通讯作者:
张恒木
作者简介:
张恒木,E-mail: zhhengmu@tsinghua.org.cn基金资助:
LIU Han1,2(), DAI Yuanxing1,2, LYU Mingfang2, YUAN Zhengjie2, LI Jing2, YAN Chengqi2, ZHANG Hengmu2,*(
)
Received:
2021-04-15
Online:
2021-10-25
Published:
2021-11-02
Contact:
ZHANG Hengmu
摘要:
为探究外源水杨酸(SA)对水稻苗期生长与SA相关防卫反应的影响,用不同浓度外源SA喷施苗期日本晴水稻,利用分光光度计测定水稻苗期生长关键指标叶绿素含量,采用qRT-PCR定量分析外源SA对水稻苗期SA合成基因PAL1、SA受体基因NPR1、SA信号途径下游的转录因子WRKY45/WRKY76和防卫基因PR1a/PR1b的表达水平。结果表明,外源SA对上述水稻基因的影响不同,即低浓度SA在一定程度上促进水稻苗期叶绿素积累,并显著影响水稻苗期防卫相关基因的表达水平;高浓度SA抑制叶绿素的积累,影响水稻的正常生长。综合比较结果显示,喷施2.0 mmol·L-1外源SA对水稻苗期防卫相关基因表达的影响最为有效,该结果为进一步探索外源SA促进水稻苗期生长并提高水稻苗期防卫能力的作用研究奠定基础。
中图分类号:
刘寒, 戴远兴, 吕明芳, 袁正杰, 李静, 严成其, 张恒木. 外源水杨酸对水稻苗期生长与防卫相关基因表达的影响[J]. 浙江农业学报, 2021, 33(10): 1789-1796.
LIU Han, DAI Yuanxing, LYU Mingfang, YUAN Zhengjie, LI Jing, YAN Chengqi, ZHANG Hengmu. Effects of exogenous salicylic acid on growth and defense-related genes of rice seedlings[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1789-1796.
目的基因 Target gene | 上游引物(5'→3') Forward primer (5'→3') | 下游引物(5'→3') Reverse primer (5'→3') | 参考文献 Reference |
---|---|---|---|
OsNPR1 | TTTCCGATGGAGGCAAGAG | GCTGTCATCCGAGCTAAGTGTT | [ |
OsPR1b | CAGCAACTGGAACAACCTTGG | TATGGACCGTGAAGGCGTGG | [ |
PAL1 | CCGACCACCTGACTCACAA | ATCTCACGCTCGATGGACTT | |
OsPR1a | TATGCTATGCTACGTGTTTATGC | CACTAAGCAAATACGGCTGACA | |
OsWRKY45 | TCCACGCGTGTGTACAGAAA | TGCTAGCATGTCTGCAGCTTA | [ |
OsWRKY76 | CTGCCCGAATTCTAGCTTCCT | GCCCAAGGACCAACAGGTTAT | |
UBC | CCGTTTGTAGAGCCATAATTGCA | AGGTTGCCTGAGTCACAGTTAAGTG | [ |
表1 qPCR采用的引物
Table 1 Primers used in qPCR
目的基因 Target gene | 上游引物(5'→3') Forward primer (5'→3') | 下游引物(5'→3') Reverse primer (5'→3') | 参考文献 Reference |
---|---|---|---|
OsNPR1 | TTTCCGATGGAGGCAAGAG | GCTGTCATCCGAGCTAAGTGTT | [ |
OsPR1b | CAGCAACTGGAACAACCTTGG | TATGGACCGTGAAGGCGTGG | [ |
PAL1 | CCGACCACCTGACTCACAA | ATCTCACGCTCGATGGACTT | |
OsPR1a | TATGCTATGCTACGTGTTTATGC | CACTAAGCAAATACGGCTGACA | |
OsWRKY45 | TCCACGCGTGTGTACAGAAA | TGCTAGCATGTCTGCAGCTTA | [ |
OsWRKY76 | CTGCCCGAATTCTAGCTTCCT | GCCCAAGGACCAACAGGTTAT | |
UBC | CCGTTTGTAGAGCCATAATTGCA | AGGTTGCCTGAGTCACAGTTAAGTG | [ |
图1 SA处理的水稻苗叶绿素含量和表型变化 *表示与0 h相比差异达显著水平(P<0.05)。下同。
Fig.1 Changes in chlorophyll content and phenotypes of rice seedlings caused by SA * represented significant differences at 0.05 level compared with 0 h. The same as below.
[1] |
PENG Y J, VAN WERSCH R, ZHANG Y L. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity[J]. Molecular Plant-Microbe Interactions, 2018, 31(4):403-409.
DOI URL |
[2] |
RESJÖ S, ZAHID M A, BURRA D D, et al. Proteomics of PTI and two ETI immune reactions in potato leaves[J]. International Journal of Molecular Sciences, 2019, 20(19):4726.
DOI URL |
[3] |
DING P T, DING Y L. Stories of salicylic acid: a plant defense hormone[J]. Trends in Plant Science, 2020, 25(6):549-565.
DOI URL |
[4] |
JIANG G H, YIN D D, SHI Y, et al. OsNPR3.3-dependent salicylic acid signaling is involved in recessive gene xa5-mediated immunity to rice bacterial blight[J]. Scientific Reports, 2020, 10:6313.
DOI URL |
[5] |
DUAN L, LIU H B, LI X H, et al. Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice[J]. Physiologia Plantarum, 2014, 152(3):486-500.
DOI URL |
[6] |
RIVAS-SAN VICENTE M, PLASENCIA J. Salicylic acid beyond defence: its role in plant growth and development[J]. Journal of Experimental Botany, 2011, 62(10):3321-3338.
DOI URL |
[7] |
BETSUYAKU S, KATOU S, TAKEBAYASHI Y, et al. Salicylic acid and jasmonic acid pathways are activated in spatially different domains around the infection site during effector-triggered immunity in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2018, 59(1):8-16.
DOI URL |
[8] |
SHEN C J, YANG Y J, LIU K D, et al. Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis[J]. Journal of Experimental Botany, 2016, 67(14):4179-4193.
DOI URL |
[9] |
DE VLEESSCHAUWER D, GHEYSEN G, HÖFTE M. Hormone defense networking in rice: tales from a different world[J]. Trends in Plant Science, 2013, 18(10):555-565.
DOI URL |
[10] |
SILVERMAN P, SESKAR M, KANTER D, et al. Salicylic acid in rice (biosynjournal, conjugation, and possible role)[J]. Plant Physiology, 1995, 108(2):633-639.
DOI URL |
[11] | YALPANI N, SILVERMAN P, WILSON T M, et al. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco[J]. The Plant Cell, 1991, 3(8):809-818. |
[12] | LEMARIÉ S, ROBERT-SEILANIANTZ A, LARIAGON C, et al. Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis[J]. Plant and Cell Physiology, 2015, 56(11):2158-2168. |
[13] |
ENYEDI A J, YALPANI N, SILVERMAN P, et al. Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus[J]. Proceedings of the National Academy of Sciences of USA, 1992, 89(6):2480-2484.
DOI URL |
[14] |
LOVE A J, GERI C, LAIRD J, et al. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity[J]. PLoS One, 2012, 7(10):e47535.
DOI URL |
[15] | ZHANG W N, CHEN W L. Role of salicylic acid in alleviating photochemical damage and autophagic cell death induction of cadmium stress in Arabidopsis thaliana[J]. Photochemical & Photobiological Sciences, 2011, 10(6):947-955. |
[16] |
LOVELOCK D A, ŠOLA I, MARSCHOLLEK S, et al. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease[J]. Molecular Plant Pathology, 2016, 17(8):1237-1251.
DOI URL |
[17] |
WHITE R F. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco[J]. Virology, 1979, 99(2):410-412.
DOI URL |
[18] |
CHEN Z, CHEN T, SATHE A, et al. Identification of a novel semi-dominant spotted-leaf mutant with enhanced resistance to Xanthomonas oryzae pv. oryzae in rice[J]. International Journal of Molecular Sciences, 2018, 19(12):3766.
DOI URL |
[19] |
STELLA DE FREITAS T F, STOUT M J, SANT'ANA J. Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax[J]. Pest Management Science, 2019, 75(3):744-752.
DOI URL |
[20] |
FENG B H, ZHANG C X, CHEN T T, et al. Salicylic acid reverses pollen abortion of rice caused by heat stress[J]. BMC Plant Biology, 2018, 18(1):245.
DOI URL |
[21] |
LOPES F B, SANT’ANA J. Responses of Spodoptera frugiperda and Trichogramma pretiosum to rice plants exposed to herbivory and phytohormones[J]. Neotropical Entomology, 2019, 48(3):381-390.
DOI URL |
[22] |
MOU S L, SHI L P, LIN W, et al. Over-expression of rice CBS domain containing protein, OsCBSX3, confers rice resistance to Magnaporthe oryzae inoculation[J]. International Journal of Molecular Sciences, 2015, 16(7):15903-15917.
DOI URL |
[23] |
PENG X X, WANG H H, JANG J C, et al. OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani[J]. Rice, 2016, 9(1):1-14.
DOI URL |
[24] |
LIU H, DONG S Y, SUN D Y, et al. CONSTANS-like 9 (OsCOL9) interacts with receptor for activated C-kinase 1(OsRACK1) to regulate blast resistance through salicylic acid and ethylene signaling pathways[J]. PLoS One, 2016, 11(11):e0166249.
DOI URL |
[25] |
XIE X Z, XUE Y J, ZHOU J J, et al. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea[J]. Molecular Plant, 2011, 4(4):688-696.
DOI URL |
[26] | 李燕, 龙湍, 吴昌银. 组培水稻种子发芽[EB/OL].(2018-03-16)[2021-04-15]. Bio-101, 2018: e1010183. DOI: 10.21769/BioProtoc.1010183. |
LI Y, LONG T, WU C Y. Germination of rice seeds with tissue culture method [EB/OL].(2018-03-16)[2021-04-15]. Bio-101, 2018: e1010183. DOI: 10.21769/BioProtoc.1010183. | |
[27] | 徐春梅, 陈丽萍, 王丹英, 等. 低氧胁迫对水稻幼苗根系功能和氮代谢相关酶活性的影响[J]. 中国农业科学, 2016, 49(8):1625-1634. |
XU C M, CHEN L P, WANG D Y, et al. Effects of low oxygen stress on the root function and enzyme activities related to nitrogen metabolism in roots of rice seedlings[J]. Scientia Agricultura Sinica, 2016, 49(8):1625-1634.(in Chinese with English abstract) | |
[28] | 项聪英, 蔡年俊, 李静, 等. 一个水稻小热休克蛋白基因的克隆和鉴定[J]. 中国水稻科学, 2016, 30(6):587-592. |
XIANG C Y, CAI N J, LI J, et al. Cloning and characterization of a small heat shock protein (SHSP) gene in rice plant[J]. Chinese Journal of Rice Science, 2016, 30(6):587-592.(in Chinese with English abstract) | |
[29] |
SHIMONO M, SUGANO S, NAKAYAMA A, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J]. The Plant Cell, 2007, 19(6):2064-2076.
DOI URL |
[30] | 周勇, 范晓磊, 林拥军, 等. 水稻叶绿素含量的测定[EB/OL].(2018-06-12)[2021-04-15]. Bio-101, 2018: e1010147.DOI: 10.21769/BioProtoc.1010147. |
ZHOU Y, FAN X L, LIN Y J, et al. Determination of chlorophyll content in rice[EB/OL].(2018-06-12)[2021-04-15]. Bio-101, 2018: e1010147. DOI: 10.21769/BioProtoc.1010147. | |
[31] |
DEMPSEY D A, VLOT A C, WILDERMUTH M C, et al. Salicylic acid biosynjournal and metabolism[J]. The Arabidopsis Book, 2011, 9:e0156.
DOI URL |
[32] |
PAJEROWSKA-MUKHTAR K M, EMERINE D K, MUKHTAR M S. Tell me more: roles of NPRs in plant immunity[J]. Trends in Plant Science, 2013, 18(7):402-411.
DOI URL |
[33] |
DING Y L, SUN T J, AO K, et al. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity[J]. Cell, 2018, 173(6):1454-1467.
DOI URL |
[34] |
ZHANG Y L, LI X. Salicylic acid: biosynjournal, perception, and contributions to plant immunity[J]. Current Opinion in Plant Biology, 2019, 50:29-36.
DOI URL |
[35] |
RYU H S, HAN M, LEE S K, et al. A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defense response[J]. Plant Cell Reports, 2006, 25(8):836-847.
DOI URL |
[36] |
LIANG X X, CHEN X J, LI C, et al. Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice[J]. Scientific Reports, 2017, 7:2474.
DOI URL |
[37] |
HUANGFU J Y, LI J C, LI R, et al. The transcription factor OsWRKY45 negatively modulates the resistance of rice to the brown planthopper Nilaparvata lugens[J]. International Journal of Molecular Sciences, 2016, 17(6):697.
DOI URL |
[38] |
PENG Y, BARTLEY L E, CANLAS P, et al. OsWRKY IIa transcription factors modulate rice innate immunity[J]. Rice, 2010, 3(1):36-42.
DOI URL |
[39] |
LIU X Y, ROCKETT K S, KØRNER C J, et al. Salicylic acid signalling: new insights and prospects at a quarter-century milestone[J]. Essays in Biochemistry, 2015, 58:101-113.
DOI URL |
[40] |
KU Y S, SINTAHA M, CHEUNG M Y, et al. Plant hormone signaling crosstalks between biotic and abiotic stress responses[J]. International Journal of Molecular Sciences, 2018, 19(10):3206.
DOI URL |
[41] |
MUR L A J, KENTON P, ATZORN R, et al. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death[J]. Plant Physiology, 2006, 140(1):249-262.
DOI URL |
[42] |
DEWEZ D, DAUTREMEPUITS C, JEANDET P, et al. Effects of methanol on photosynthetic processes and growth of Lemna gibba[J]. Photochemistry and Photobiology, 2003, 78(4):420-424.
DOI URL |
[1] | 王灿, 付天岭, 龚思同, 娄飞, 周凯, 代良羽, 刘静, 林大松, 何腾兵. 叶面阻控剂对黔中喀斯特地区水稻Cd富集特征的影响[J]. 浙江农业学报, 2021, 33(9): 1710-1719. |
[2] | 王佳, 慕瑞瑞, 杨乔乔, 刘伟, 张月荷, 康建宏. 滴灌水肥一体化下施钾量对宁夏春玉米叶绿素荧光特性与产量的影响[J]. 浙江农业学报, 2021, 33(8): 1347-1357. |
[3] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅光合荧光特性影响[J]. 浙江农业学报, 2021, 33(8): 1416-1425. |
[4] | 张惠云, 秦丽杰, 贾利. 吉林省水稻生产的碳足迹与水足迹时空变化特征[J]. 浙江农业学报, 2021, 33(6): 974-983. |
[5] | 朱芸, 郭彬, 林义成, 傅庆林, 刘琛, 李凝玉, 李华. 新型矿基土壤调理剂对滨海盐土理化性状和水稻产量的影响[J]. 浙江农业学报, 2021, 33(5): 885-892. |
[6] | 吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687. |
[7] | 厉宝仙, 王保君, 怀燕, 沈亚强, 张红梅, 程旺大. 水稻-红鳌螯虾共作对稻田土壤养分、碳库与稻米品质的影响[J]. 浙江农业学报, 2021, 33(4): 688-696. |
[8] | 刘俊, 朱德泉, 于从羊, 薛康, 张顺, 廖娟. 舀勺型孔轮式水稻精量排种器设计与试验[J]. 浙江农业学报, 2021, 33(4): 739-752. |
[9] | 陈丹, 汤翠凤, 董超, 甘树仙, 李俊, 阿新祥, 张斐斐, 杨雅云, 牛赛赛, 戴陆园. 云南软米地方品种籽粒淀粉品质特性研究[J]. 浙江农业学报, 2021, 33(2): 203-214. |
[10] | 邹文雄, 吴伟, 关亚静, 曹栋栋, 卞晓波, 施德云, 丁丽玲. 水稻种子休眠调控技术研究进展[J]. 浙江农业学报, 2021, 33(2): 369-379. |
[11] | 谭晓菁, 王忠华, 吴月燕, 郑二松, 徐如梦, 陈剑平, 王栩鸣, 严成其. 基因编辑技术在水稻抗病基因与育种研究中的应用进展[J]. 浙江农业学报, 2021, 33(10): 1982-1990. |
[12] | 宋新丹, 陈斌斌, 马增岭, 徐丽丽, 林立东, 吴明江. 盐度对羊栖菜(Sargassum fusiforme)幼体光合特性的影响[J]. 浙江农业学报, 2020, 32(9): 1634-1644. |
[13] | 谷建诚, 郭彬, 林义成, 傅庆林, 刘琛, 丁能飞, 李华, 李凝玉. 根表铁膜对水稻镉吸收的影响[J]. 浙江农业学报, 2020, 32(6): 963-970. |
[14] | 夏文建, 秦文婧, 刘佳, 陈晓芬, 张丽芳, 曹卫东, 徐昌旭, 陈静蕊. 长期绿肥利用下红壤性水稻土有机碳和可溶性有机碳的垂直分布特征[J]. 浙江农业学报, 2020, 32(5): 878-885. |
[15] | 邵文奇, 钟平, 董玉兵, 孙春梅, 纪力, 庄春, 陈川, 章安康. 托盘育苗中光温资源差异及其对水稻秧苗素质的影响[J]. 浙江农业学报, 2020, 32(2): 191-199. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||