浙江农业学报 ›› 2021, Vol. 33 ›› Issue (10): 1797-1807.DOI: 10.3969/j.issn.1004-1524.2021.10.02
孟亚轩(
), 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧*(
)
收稿日期:2020-12-15
出版日期:2021-10-25
发布日期:2021-11-02
作者简介:刘颖慧,E-mail: leely519@126.com通讯作者:
刘颖慧
基金资助:
MENG Yaxuan(
), SUN Yingqi, ZHAO Xinyue, WANG Fengxia, WENG Qiaoyun, LIU Yinghui*(
)
Received:2020-12-15
Online:2021-10-25
Published:2021-11-02
Contact:
LIU Yinghui
摘要:
糖苷水解酶5(GH5)属于最大的糖苷水解酶家族,在细胞壁合成与降解过程中发挥重要作用。为解读谷子GH5基因家族特性,通过生物信息学方法对谷子进行全基因组扫描,鉴定并分析谷子GH5家族成员。结果表明,谷子具有18个GH5基因(命名为SiGH5-1~SiGH5-18),不均匀分布在8条染色体上。SiGH5蛋白具有保守结构域,叠合比对发现不同物种GH5蛋白结构高度保守。多物种系统发育树分析表明,GH5蛋白具有种属特异性特点。基因结构分析发现,同一分支的GH5蛋白具有相似的基序分布,GH5成员具有外显子改组现象。表达谱分析发现,谷子GH5家族基因属诱导型表达,其中,SiGH5-8、SiGH5-17在谷子各器官和非生物胁迫过程中均具有较高表达量。启动子分析鉴定到大量激素类响应元件,暗示GH5家族成员通过响应植物内源激素发挥调控作用。
中图分类号:
孟亚轩, 孙颖琦, 赵心月, 王凤霞, 瓮巧云, 刘颖慧. 谷子GH5基因家族全基因组鉴定和表达分析[J]. 浙江农业学报, 2021, 33(10): 1797-1807.
MENG Yaxuan, SUN Yingqi, ZHAO Xinyue, WANG Fengxia, WENG Qiaoyun, LIU Yinghui. Identification and expression analysis of millet GH5 gene family[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1797-1807.
| 基因名称 Gene name | 转录名 Transcript name | 位置 Location/bp | 外显子数量 Number of extron | 开放阅读 框长度 Length of open reading fragment/bp | 亚细胞定位 Subcellular location | 蛋白质Protein | ||
|---|---|---|---|---|---|---|---|---|
| 氨基酸 数量 Amino acid number/ aa | 分子量 Molecular weight/ku | 等电点 Isoelec- tric point | ||||||
| SiGH5-1 | KQL30310 | Chr01.29829643-29831492 | 3 | 1 850 | 叶绿体Chloroplast | 556 | 59.66 | 6.10 |
| SiGH5-2 | KQL31659 | Chr01.39063114-39064817 | 4 | 1 704 | 细胞质Cytoplasm | 410 | 44.71 | 6.12 |
| SiGH5-3 | KQL13587 | Chr03.5378556-5381974 | 8 | 3 419 | 细胞壁Cell wall | 541 | 59.52 | 8.00 |
| SiGH5-4 | KQL16047 | Chr03.27514790-27518321 | 5 | 3 532 | 叶绿体、细胞质 | 499 | 56.24 | 6.68 |
| Chloroplast, cytoplasm | ||||||||
| SiGH5-5 | KQL09905 | Chr04.7339963-7344080 | 10 | 4 118 | 细胞壁Cell wall | 539 | 60.40 | 5.25 |
| SiGH5-6 | KQL10447 | Chr04.15288452-15292978 | 5 | 4 527 | 细胞壁、细胞质 | 438 | 48.76 | 8.51 |
| Cell wall, cytoplasm | ||||||||
| SiGH5-7 | KQL06275 | Chr05.32331156-32333994 | 3 | 2 839 | 细胞质Cytoplasm | 428 | 45.85 | 9.34 |
| SiGH5-8 | KQL06959 | Chr05.36712724-36715959 | 5 | 3 236 | 细胞质Cytoplasm | 464 | 51.50 | 6.68 |
| SiGH5-9 | KQL02231 | Chr06.31102783-31106162 | 10 | 3 380 | 细胞壁Cell wall | 526 | 59.01 | 4.93 |
| SiGH5-10 | KQK96704 | Chr07.14261700-14264284 | 2 | 2 585 | 叶绿体Chloroplast | 578 | 62.46 | 9.12 |
| SiGH5-11 | KQK97746 | Chr07.23041168-23045609 | 3 | 4 442 | 细胞膜Cell membrane | 557 | 61.17 | 6.47 |
| SiGH5-12 | KQK97753 | Chr07.23047335-23050440 | 3 | 3 106 | 叶绿体Chloroplast | 554 | 59.71 | 7.81 |
| SiGH5-13 | KQK99686 | Chr07.34214668-34216588 | 5 | 1 921 | 叶绿体、细胞壁 | 419 | 46.91 | 5.10 |
| Chloroplast, cell wall | ||||||||
| SiGH5-14 | KQK93353 | Chr08.710113-711489 | 5 | 1 377 | 细胞质Cytoplasm | 285 | 31.69 | 5.70 |
| SiGH5-15 | KQK86298 | Chr09.1179023-1181193 | 4 | 2 171 | 细胞质Cytoplasm | 480 | 52.38 | 8.66 |
| SiGH5-16 | KQK89267 | Chr09.22784605-22789592 | 9 | 4 988 | 细胞壁Cell wall | 492 | 54.71 | 5.16 |
| SiGH5-17 | KQK89268 | Chr09.22801684-22805751 | 8 | 4 068 | 细胞壁Cell wall | 511 | 56.29 | 5.10 |
| SiGH5-18 | KQK89274 | Chr09.22899258-22905994 | 7 | 6 737 | 细胞壁Cell wall | 451 | 50.76 | 6.38 |
表1 谷子GH5基因家族信息
Table 1 GH5 gene family information of millet
| 基因名称 Gene name | 转录名 Transcript name | 位置 Location/bp | 外显子数量 Number of extron | 开放阅读 框长度 Length of open reading fragment/bp | 亚细胞定位 Subcellular location | 蛋白质Protein | ||
|---|---|---|---|---|---|---|---|---|
| 氨基酸 数量 Amino acid number/ aa | 分子量 Molecular weight/ku | 等电点 Isoelec- tric point | ||||||
| SiGH5-1 | KQL30310 | Chr01.29829643-29831492 | 3 | 1 850 | 叶绿体Chloroplast | 556 | 59.66 | 6.10 |
| SiGH5-2 | KQL31659 | Chr01.39063114-39064817 | 4 | 1 704 | 细胞质Cytoplasm | 410 | 44.71 | 6.12 |
| SiGH5-3 | KQL13587 | Chr03.5378556-5381974 | 8 | 3 419 | 细胞壁Cell wall | 541 | 59.52 | 8.00 |
| SiGH5-4 | KQL16047 | Chr03.27514790-27518321 | 5 | 3 532 | 叶绿体、细胞质 | 499 | 56.24 | 6.68 |
| Chloroplast, cytoplasm | ||||||||
| SiGH5-5 | KQL09905 | Chr04.7339963-7344080 | 10 | 4 118 | 细胞壁Cell wall | 539 | 60.40 | 5.25 |
| SiGH5-6 | KQL10447 | Chr04.15288452-15292978 | 5 | 4 527 | 细胞壁、细胞质 | 438 | 48.76 | 8.51 |
| Cell wall, cytoplasm | ||||||||
| SiGH5-7 | KQL06275 | Chr05.32331156-32333994 | 3 | 2 839 | 细胞质Cytoplasm | 428 | 45.85 | 9.34 |
| SiGH5-8 | KQL06959 | Chr05.36712724-36715959 | 5 | 3 236 | 细胞质Cytoplasm | 464 | 51.50 | 6.68 |
| SiGH5-9 | KQL02231 | Chr06.31102783-31106162 | 10 | 3 380 | 细胞壁Cell wall | 526 | 59.01 | 4.93 |
| SiGH5-10 | KQK96704 | Chr07.14261700-14264284 | 2 | 2 585 | 叶绿体Chloroplast | 578 | 62.46 | 9.12 |
| SiGH5-11 | KQK97746 | Chr07.23041168-23045609 | 3 | 4 442 | 细胞膜Cell membrane | 557 | 61.17 | 6.47 |
| SiGH5-12 | KQK97753 | Chr07.23047335-23050440 | 3 | 3 106 | 叶绿体Chloroplast | 554 | 59.71 | 7.81 |
| SiGH5-13 | KQK99686 | Chr07.34214668-34216588 | 5 | 1 921 | 叶绿体、细胞壁 | 419 | 46.91 | 5.10 |
| Chloroplast, cell wall | ||||||||
| SiGH5-14 | KQK93353 | Chr08.710113-711489 | 5 | 1 377 | 细胞质Cytoplasm | 285 | 31.69 | 5.70 |
| SiGH5-15 | KQK86298 | Chr09.1179023-1181193 | 4 | 2 171 | 细胞质Cytoplasm | 480 | 52.38 | 8.66 |
| SiGH5-16 | KQK89267 | Chr09.22784605-22789592 | 9 | 4 988 | 细胞壁Cell wall | 492 | 54.71 | 5.16 |
| SiGH5-17 | KQK89268 | Chr09.22801684-22805751 | 8 | 4 068 | 细胞壁Cell wall | 511 | 56.29 | 5.10 |
| SiGH5-18 | KQK89274 | Chr09.22899258-22905994 | 7 | 6 737 | 细胞壁Cell wall | 451 | 50.76 | 6.38 |
图5 GH5蛋白结构 A,GH5蛋白二级结构。蓝色代表α-螺旋,绿色代表β-折叠,红色代表延伸链。竖条纹图和峰图代表每个位点的预测结果信息,相同的颜色代表相同的结构。B,不同物种GH5蛋白三级结构。
Fig.5 Structure of GH5 protein A, Secondary structure of GH5 protein. Blue represented α-helix, green represented β-folding, and red represented extended chain. The vertical fringe and peak plots represent the predicted result information of each site, and the same color represents the same structure. B, Tertiary structure of GH5 protein in different species.
| 项目Item | 谷子Setaria italica |
|---|---|
| 大豆Glycine max | 0.58 |
| 高粱Sorghum bicolor | 1.56 |
| 水稻Oryza sativa | 1.09 |
| 拟南芥Arabidopsis thaliana | 1.76 |
| 小立碗藓Physcomitrella patens | 1.71 |
| 玉米Zea mays | 1.48 |
表2 不同物种GH5蛋白三级结构的RMSD值
Table 2 RMSD value of tertiary structure of GH5 protein from different species
| 项目Item | 谷子Setaria italica |
|---|---|
| 大豆Glycine max | 0.58 |
| 高粱Sorghum bicolor | 1.56 |
| 水稻Oryza sativa | 1.09 |
| 拟南芥Arabidopsis thaliana | 1.76 |
| 小立碗藓Physcomitrella patens | 1.71 |
| 玉米Zea mays | 1.48 |
图6 GH5家族基因顺式作用元件分布 A,脱落酸响应元件;B,厌氧诱导元件;C,生长素响应元件;D,防御应激响应元件;E,光响应元件;F,低温响应元件;G,茉莉酸响应元件;H,分生组织表达相关元件;I,MYB结合位点。
Fig.6 Distribution of cis-elements in promoter of GH5 family genes A, Abscisic acid response element; B, Anaerobic induction element; C, Auxin response element; D, Defense and stress response element; E, Light response element; F, Low temperature response element; G, MeJA response element; H, Meristems express response element; I, MYB binding site.
图9 不同物种GH5蛋白进化树 红色代表谷子;黑色代表大豆;棕色代表高粱;蓝色代表水稻;青色代表拟南芥;黄色代表小立碗藓;绿色代表玉米。
Fig.9 Phylogenetic tree of GH5 proteins from different species Red represented Setaria italica; Black represented Glycine max; Brown represented Sorghum bicolor; Blue represented Oryza sativa; Cyan represented Arabidopsis thaliana; Yellow represented Physcomitrella patens; Green represented Zea mays.
| 谷子基因名 Gene names of Setaria italica | 玉米基因名 Gene names of Zea mays | 非同义突变概率 Nonsynonymous (Ka) | 同义突变概率 Synonymous (Ks) | 进化指数 Evolution index (Ka/Ks) |
|---|---|---|---|---|
| SiGH5-1 | Zm00001d050974 | 0.087 0 | 0.208 8 | 0.418 2 |
| SiGH5-2 | Zm00001d052158 | 0.173 4 | 0.302 8 | 0.572 8 |
| SiGH5-3 | Zm00001d010039 | 0.742 2 | 1.373 5 | 0.540 3 |
| SiGH5-4 | Zm00001d035149 | 0.219 3 | 0.420 8 | 0.521 0 |
| SiGH5-5 | Zm00001d044877 | 0.131 2 | 0.293 7 | 0.446 6 |
| SiGH5-6 | Zm00001d045873 | 0.080 0 | 0.327 8 | 0.246 6 |
| SiGH5-7 | Zm00001d043965 | 0.091 0 | 0.282 6 | 0.325 2 |
| SiGH5-8 | Zm00001d043443 | 0.064 0 | 0.148 6 | 0.436 5 |
| SiGH5-11 | Zm00001d025696 | 0.075 0 | 0.373 3 | 0.201 0 |
| SiGH5-12 | Zm00001d003281 | 0.104 4 | 0.196 4 | 0.531 5 |
| SiGH5-13 | Zm00001d005052 | 0.077 0 | 0.321 8 | 0.241 2 |
| SiGH5-14 | Zm00001d005052 | 0.096 0 | 0.318 9 | 0.303 9 |
| SiGH5-15 | Zm00001d034723 | 0.145 5 | 0.201 1 | 0.723 6 |
表3 谷子、玉米GH5家族基因进化选择压力分析
Table 3 Analysis of evolutionary selection pressure of GH5 family genes in Setaria italica and Sorghum bicolor
| 谷子基因名 Gene names of Setaria italica | 玉米基因名 Gene names of Zea mays | 非同义突变概率 Nonsynonymous (Ka) | 同义突变概率 Synonymous (Ks) | 进化指数 Evolution index (Ka/Ks) |
|---|---|---|---|---|
| SiGH5-1 | Zm00001d050974 | 0.087 0 | 0.208 8 | 0.418 2 |
| SiGH5-2 | Zm00001d052158 | 0.173 4 | 0.302 8 | 0.572 8 |
| SiGH5-3 | Zm00001d010039 | 0.742 2 | 1.373 5 | 0.540 3 |
| SiGH5-4 | Zm00001d035149 | 0.219 3 | 0.420 8 | 0.521 0 |
| SiGH5-5 | Zm00001d044877 | 0.131 2 | 0.293 7 | 0.446 6 |
| SiGH5-6 | Zm00001d045873 | 0.080 0 | 0.327 8 | 0.246 6 |
| SiGH5-7 | Zm00001d043965 | 0.091 0 | 0.282 6 | 0.325 2 |
| SiGH5-8 | Zm00001d043443 | 0.064 0 | 0.148 6 | 0.436 5 |
| SiGH5-11 | Zm00001d025696 | 0.075 0 | 0.373 3 | 0.201 0 |
| SiGH5-12 | Zm00001d003281 | 0.104 4 | 0.196 4 | 0.531 5 |
| SiGH5-13 | Zm00001d005052 | 0.077 0 | 0.321 8 | 0.241 2 |
| SiGH5-14 | Zm00001d005052 | 0.096 0 | 0.318 9 | 0.303 9 |
| SiGH5-15 | Zm00001d034723 | 0.145 5 | 0.201 1 | 0.723 6 |
| [1] | ILMBERGER N, STREIT W R. Screening for cellulase encoding clones in metagenomic libraries[M]//STREIT W, DANIEL R. Methods in molecular biology. New York, Humana Press, 2017. |
| [2] | 江琴. 单双子叶植物中纤维素合成酶基因家族的分子进化研究[D]. 福州: 福建农林大学, 2018. |
| JIANG Q. Differential evolution patterns of the cellulose synthase gene superfamily in eudicots and monocots[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese with English abstract) | |
| [3] | 袁红梅, 郭文栋, 赵丽娟, 等. 亚麻纤维素合酶超基因家族的生物信息学及表达分析[J]. 中国农业科学, 2016, 49(23):4656-4668. |
| YUAN H M, GUO W D, ZHAO L J, et al. Bioinformatics and expression analysis of the cellulose synthase supergene family in flax[J]. Scientia Agricultura Sinica, 2016, 49(23):4656-4668.(in Chinese with English abstract) | |
| [4] |
WANG Y, VILAPLANA F, BRUMER H, et al. Enzymatic characterization of a glycoside hydrolase family 5 subfamily 7 (GH5_7) mannanase from Arabidopsis thaliana[J]. Planta, 2014, 239(3):653-665.
DOI URL |
| [5] |
ASPEBORG H, COUTINHO P M, WANG Y, et al. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5)[J]. BMC Evolutionary Biology, 2012, 12:186.
DOI URL |
| [6] | 王丽珊. 甘蔗纤维素酶基因家族基因组演化与功能分析[D]. 福州: 福建师范大学, 2015. |
| WANG L S. The phylogenetic and function analysis of cellulase gene families in sugarcane[D]. Fuzhou: Fujian Normal University, 2015. (in Chinese with English abstract) | |
| [7] |
HENRISSAT B, CLAEYSSENS M, TOMME P, et al. Cellulase families revealed by hydrophobic cluster analysis[J]. Gene, 1989, 81(1):83-95.
DOI URL |
| [8] |
YU L L, SUN J Y, LI L G. PtrCel9A6, an endo-1, 4-β-glucanase, is required for cell wall formation during xylem differentiation in Populus[J]. Molecular Plant, 2013, 6(6):1904-1917.
DOI URL |
| [9] |
BRUMMELL D A, BIRD C R, SCHUCH W, et al. An endo-1, 4-beta-glucanase expressed at high levels in rapidly expanding tissues[J]. Plant Molecular Biology, 1997, 33(1):87-95.
DOI URL |
| [10] |
HE H J, BAI M, TONG P P, et al. CELLULASE6 and MANNANASE7 affect cell differentiation and silique dehiscence[J]. Plant Physiology, 2018, 176(3):2186-2201.
DOI URL |
| [11] | 陈茹佳. 陆生植物GH5_11类型纤维素酶基因的起源、进化和功能分化分析[D]. 扬州: 扬州大学, 2018. |
| CHEN R J. The origin, evolution and functional divergence of land plant GH5_11 cellulases[D]. Yangzhou: Yangzhou University, 2018. (in Chinese with English abstract) | |
| [12] |
DONOHOE B S, WEI H, MITTAL A, et al. Towards an understanding of enhanced biomass digestibility by in planta expression of a family 5 glycoside hydrolase[J]. Scientific Reports, 2017, 7:4389.
DOI URL |
| [13] | 王丽珊. 拟南芥和水稻Cel基因家族的生物信息学分析[J]. 闽西职业技术学院学报, 2019, 21(1):101-106. |
| WANG L S. Bioinformatic analysis of Cel gene family in Arabidopsis and rice[J]. Journal of Minxi Vocational and Technical College, 2019, 21(1):101-106.(in Chinese with English abstract) | |
| [14] |
KENNEDY D. What don’t we know?[J]. Science, 2005, 309(5731):75.
DOI URL |
| [15] |
BENNETZEN J L, SCHMUTZ J, WANG H, et al. Reference genome sequence of the model plant Setaria[J]. Nature Biotechnology, 2012, 30(6):555-561.
DOI URL |
| [16] |
MISTRY J, CHUGURANSKY S, WILLIAMS L, et al. Pfam: the protein families database in 2021[J]. Nucleic Acids Research, 2021, 49(Database issue):D412-D419.
DOI URL |
| [17] |
MARCHLER-BAUER A, ANDERSON J B, CHITSAZ F, et al. CDD: specific functional annotation with the conserved domain database[J]. Nucleic Acids Research, 2009, 37(Database issue):D205-D210.
DOI URL |
| [18] |
HUNTER S, APWEILER R, ATTWOOD T K, et al. InterPro: the integrative protein signature database[J]. Nucleic Acids Research, 2009, 37(Database issue):D211-D215.
DOI URL |
| [19] |
WANG Y J, DENG D X, SHI Y T, et al. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes[J]. Molecular Biology Reports, 2012, 39(3):2401-2415.
DOI URL |
| [20] | 韩斌, 刘江, 赵兴华, 等. 玉米JAZ基因家族的生物信息学分析[J]. 山西农业科学, 2020, 48(10):1552-1556. |
| HAN B, LIU J, ZHAO X H, et al. Bioinformatics analysis of JAZ gene family in maize[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(10):1552-1556.(in Chinese with English abstract) | |
| [21] |
BAILEY T L, BODEN M, BUSKE F A, et al. MEME suite: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(Database issue):W202-W208.
DOI URL |
| [22] |
TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729.
DOI URL |
| [23] |
LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics (Oxford, England), 2007, 23(21):2947-2948.
DOI URL |
| [24] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.
DOI URL |
| [25] |
SIGRIST C J A, CERUTTI L, DE CASTRO E, et al. PROSITE, a protein domain database for functional characterization and annotation[J]. Nucleic Acids Research, 2010, 38(Database issue):D161-D166.
DOI URL |
| [26] | 韩心怡, 刘毅慧. 蛋白质二级结构预测服务器PSRSM[J]. 生物信息学, 2020, 18(2):116-126. |
| HAN X Y, LIU Y H. Protein secondary structure prediction Server PSRSM[J]. Chinese Journal of Bioinformatics, 2020, 18(2):116-126.(in Chinese with English abstract) | |
| [27] |
KIEFER F, ARNOLD K, KUNZLI M, et al. The SWISS-MODEL repository and associated resources[J]. Nucleic Acids Research, 2009, 37(Database issue):D387-D392.
DOI URL |
| [28] | 秦玲, 张鑫, 荣春笑, 等. 苹果多胺氧化酶(PAO)基因家族鉴定与表达分析[J]. 浙江农业学报, 2020, 32(2):262-273. |
| QIN L, ZHANG X, RONG C X, et al. Identification and expression analysis of polyamine oxidase (PAO) gene family in apple[J]. Acta Agriculturae Zhejiangensis, 2020, 32(2):262-273.(in Chinese with English abstract) | |
| [29] |
HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8):1296-1297.
DOI URL |
| [30] |
DADHEECH T, JAKHESARA S, CHAUHAN P S, et al. Draft genome analysis of lignocellulolytic enzymes producing Aspergillus terreus with structural insight of β-glucosidases through molecular docking approach[J]. International Journal of Biological Macromolecules, 2019, 125:181-190.
DOI URL |
| [31] | 郑菲. 真菌第五家族纤维素酶的基因挖掘与分子改良研究[D]. 北京: 北京林业大学, 2019. |
| ZHENG F. Gene excavation and molecular engineering of glycoside hydrolyase family 5 cellulase from fungi[D]. Beijing: Beijing Forestry University, 2019. (in Chinese with English abstract) | |
| [32] | 杨明霞, 连红娟, 王晓芳, 等. 葡萄MPT基因家族鉴定与表达分析[J]. 浙江农业学报, 2020, 32(12):2173-2185. |
| YANG M X, LIAN H J, WANG X F, et al. Identification and expression analysis of grape MPT gene family[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12):2173-2185.(in Chinese with English abstract) |
| [1] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [2] | 张美莹, 莫倩, 齐秀双, 佟宁宁, 孔凡, 刘政安, 吕长平, 彭丽平. 牡丹PoLPAT2基因的克隆及表达分析[J]. 浙江农业学报, 2025, 37(2): 321-328. |
| [3] | 崔博文, 张思懿, 王佳玲, 王竞红, 蔺吉祥, 杨青杰. 宽叶苔草WRKY家族成员生物信息学分析与耐旱基因挖掘[J]. 浙江农业学报, 2025, 37(10): 2087-2103. |
| [4] | 刘辉, 王晓蒙, 闫留延, 王永芳, 杨朋娟, 龚珂珂, 李兴杰, 董志平, 贾小平. 谷子B3转录因子可变剪切体分析[J]. 浙江农业学报, 2024, 36(9): 1969-1976. |
| [5] | 欧晋稳, 张古文, 冯志娟, 王斌, 卜远鹏, 徐钰, 茹磊, 刘娜, 龚亚明. 大豆海藻糖-6-磷酸磷酸酶基因GmTPP的鉴定及其在生长发育和非生物胁迫响应中的表达分析[J]. 浙江农业学报, 2024, 36(9): 2031-2041. |
| [6] | 孙培媛, 冉彬, 王佳蕊, 李洪有. 苦荞FtDELLA基因的克隆与表达分析[J]. 浙江农业学报, 2024, 36(8): 1709-1718. |
| [7] | 唐红, 关文志, 许晓军, 牛宝龙, 楼宝, 沈小明, 顾志敏. 三角鲂foxl2基因克隆和时空表达特征及EE2对其表达的影响[J]. 浙江农业学报, 2024, 36(8): 1789-1799. |
| [8] | 袁晓, 蒋园园, 朱云娜, 曲姗姗, 王玉昆, 原远, 王斌. JAZ家族基因在采后黄瓜低温贮藏条件下的表达分析[J]. 浙江农业学报, 2024, 36(8): 1820-1831. |
| [9] | 蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843. |
| [10] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
| [11] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
| [12] | 寿伟松, 王铎, 沈佳, 许昕阳, 张跃建, 何艳军. 西瓜蔗糖转运蛋白SUT家族的鉴定及其在果实发育和逆境响应中的表达分析[J]. 浙江农业学报, 2024, 36(1): 94-102. |
| [13] | 李小霞, 李丹, 李万星, 靳鲲鹏, 刘永忠, 韩文清, 黄学芳, 刘鑫, 田岗, 曹晋军. 不同轮作模式对谷子灌浆期生理特性、产量和品质的影响[J]. 浙江农业学报, 2023, 35(7): 1499-1510. |
| [14] | 张丽, 王媛媛, 王瑞, 刘丽霞. 牦牛DRA基因克隆测序及生物信息学分析[J]. 浙江农业学报, 2023, 35(7): 1564-1570. |
| [15] | 庞雪晴, 唐诗, 曾红梅, 赵位, 王印, 罗燕, 姚学萍, 任梅渗, 任永军, 杨泽晓. 两株GI.1型和GI.2型兔出血症病毒RdRp基因的克隆与分析[J]. 浙江农业学报, 2023, 35(6): 1286-1296. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||