浙江农业学报 ›› 2025, Vol. 37 ›› Issue (4): 808-819.DOI: 10.3969/j.issn.1004-1524.20240596
狄延翠(), 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩*(
)
收稿日期:
2024-07-04
出版日期:
2025-04-25
发布日期:
2025-05-09
作者简介:
狄延翠( 2000—),女,河南三门峡人,硕士研究生,研究方向为设施蔬菜优质高效生产技术。E-mail:13525866912@163.com
通讯作者:
*董韩,E-mail:440069@henau.edu.cn
基金资助:
DI Yancui(), JI Zelin, WANG Yuanyuan, LOU Shihao, ZHANG Tao, GUO Zhixin, SHEN Shunshan, PIAO Fengzhi, DU Nanshan, DONG Xiaoxing, DONG Han*(
)
Received:
2024-07-04
Online:
2025-04-25
Published:
2025-05-09
摘要: MYB转录因子在植物逆境应答过程中发挥着重要的调控作用。为了挖掘更多番茄(Solanum lycopersicum L.)MYB转录因子成员信息,本研究从番茄中克隆了SlMYB52基因,采用生物信息学手段对SlMYB52基因进行基因结构、编码蛋白信息、保守结构域、系统进化树及启动子顺式作用元件预测等的分析,利用烟草叶片瞬时转化法分析亚细胞定位,通过qRT-PCR进行组织特异性表达及响应逆境胁迫的分析。结果表明SlMYB52基因全长1 431 bp,编码253个氨基酸,预测相对分子质量为29 035.22,理论等电点9.08,属于不稳定蛋白质、亲水性蛋白质;SlMYB52所编码蛋白质不含跨膜结构,没有潜在的信号肽位点;该蛋白质二级结构以无规卷曲为主,占比59.68%;系统进化树分析显示,SlMYB52与NtMYB4a亲缘关系最近;亚细胞定位结果显示,该SlMYB52蛋白定位在细胞核;对SlMYB52启动子分析,发现其含有大量的逆境响应元件;qRT-PCR结果表明,SlMYB52基因在茎中表达最高,其次是叶,在顶芽中表达量最低;SlMYB52基因的表达受高盐、低温及辣椒疫霉菌侵染的诱导,在干旱胁迫下SlMYB52基因的表达受到明显抑制,说明该基因可能参与逆境胁迫的应答。本研究结果为进一步研究SlMYB52基因的生物学功能及作用机制提供理论依据。
中图分类号:
狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819.
DI Yancui, JI Zelin, WANG Yuanyuan, LOU Shihao, ZHANG Tao, GUO Zhixin, SHEN Shunshan, PIAO Fengzhi, DU Nanshan, DONG Xiaoxing, DONG Han. Identification, subcellular localization and expression analysis of tomato SlMYB52 gene[J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 808-819.
引物名称 Primer name | 引物序列 Primer sequence(5'→3') | 注释 Annotation |
---|---|---|
RT-SlMYB52-F | GCAGAAAGGTACGAGCATGG | qRT-PCR |
RT-SlMYB52-R | GTTCTTGAAAGCCCTGCGAA | |
RT-ACTIN2-F | TGTCCCTATTTACGAGGGTTATGC | |
RT-ACTIN2-R | CAGTTAAATCACGACCAGCAAGAT | |
RT-UBI3-F | GCCGACTACAACATCCAGAAGG | |
RT-UBI3-R | TGCAACACAGCGAGCTTAACC | |
GFP-SlMYB52-F | ctctcgagctttcgc gagctcATGCCAAGGGTACAACAACAGC | 融合绿色荧光蛋白Fused with GFP |
GFP-SlMYB52-R | gcccttgctcaccat ggatccGATATTTCCAAGTACATCAATCCAGAA |
表1 引物序列表
Table 1 Primer sequences
引物名称 Primer name | 引物序列 Primer sequence(5'→3') | 注释 Annotation |
---|---|---|
RT-SlMYB52-F | GCAGAAAGGTACGAGCATGG | qRT-PCR |
RT-SlMYB52-R | GTTCTTGAAAGCCCTGCGAA | |
RT-ACTIN2-F | TGTCCCTATTTACGAGGGTTATGC | |
RT-ACTIN2-R | CAGTTAAATCACGACCAGCAAGAT | |
RT-UBI3-F | GCCGACTACAACATCCAGAAGG | |
RT-UBI3-R | TGCAACACAGCGAGCTTAACC | |
GFP-SlMYB52-F | ctctcgagctttcgc gagctcATGCCAAGGGTACAACAACAGC | 融合绿色荧光蛋白Fused with GFP |
GFP-SlMYB52-R | gcccttgctcaccat ggatccGATATTTCCAAGTACATCAATCCAGAA |
名称 Name | 序列 Sequence | 功能 Function | 数目 Amount |
---|---|---|---|
TGA-element | AACGAC | 生长素响应元件Auxin-responsive element | 1 |
TC-rich repeats | ATTCTCTAAC | 参与防御和应激反应的顺式作用因子 | 1 |
cis-acting element involved in defense and stress responsiveness | |||
ACE | CTAACGTATT | 与光响应性有关的顺式作用元件cis-acting element involved in light responsiveness | 1 |
TCA-element | CCATCTTTTT | 参与水杨酸反应的顺式作用元件 | 1 |
cis-acting element involved in salicylic acid responsiveness | |||
ABRE | ACGTG | 参与脱落酸反应的顺式元件 | 2 |
AACCCGG | cis-acting element involved in the abscisic acid responsiveness | 1 | |
ARE | AAACCA | 对厌氧诱导必不可少的顺式调节元件 | 2 |
cis-acting regulatory element essential for the anaerobic induction | |||
AuxRR-core | GGTCCAT | 参与生长素反应性的顺式调控元件 | 1 |
cis-acting regulatory element involved in auxin responsiveness | |||
G-box | TACGTG | 参与光响应的顺式调节元件 | 2 |
cis-acting regulatory element involved in light responsiveness | |||
TGACG-motif | CGTCA | 参与MeJA反应的顺式作用调控元件 | 3 |
TGACG | cis-acting regulatory element involved in the MeJA-responsiveness | 3 | |
CAAT-box | CAAAT | 启动子和增强子区域中常见的顺式作用元件 | 14 |
CCAAT | Common cis-acting element in promoter and enhancer regions | 7 | |
TATA-box | ATATAA | 核心启动子元件在转录开始的-30左右 | 3 |
ATATAT | Core promoter element around -30 of transcription start-30左右 | 3 | |
ATTATA | 6 | ||
TACAAAA | 2 | ||
TATA | 20 | ||
TATAA | 6 | ||
TATAAA | 1 | ||
TATAAAT | 1 | ||
TATAAATA | 1 | ||
TATACA | 3 | ||
TATATA | 3 | ||
TATATAA | 2 | ||
taTATAAAtc | 1 | ||
TATATTTATATTT | 1 | ||
TATTTAAA | 1 | ||
GT1-motif | GGTTAA | 光响应元件Light responsive element | 2 |
MRE | AACCTAA | MYB结合位点参与光响应性MYB binding site involved in light esponsiveness | 2 |
Box 4 | ATTAAT | 与光反应有关的保守DNA模块的一部分 | 5 |
Part of a conserved DNA module involved in light responsiveness | |||
TCT-motif | TCTTAC | 光响应元件的一部分Part of a light responsive element | 1 |
GATA-motif | GATAGGA | 光响应元件的一部分Part of a light responsive element | 1 |
TGA-box | TGACGTAA | 生长素反应元件的一部分Part of an auxin-responsive element | 1 |
表2 SlMYB52基因启动子顺式作用元件分析
Table 2 Analysis of cis-acting elements of SlMYB52 gene promoter
名称 Name | 序列 Sequence | 功能 Function | 数目 Amount |
---|---|---|---|
TGA-element | AACGAC | 生长素响应元件Auxin-responsive element | 1 |
TC-rich repeats | ATTCTCTAAC | 参与防御和应激反应的顺式作用因子 | 1 |
cis-acting element involved in defense and stress responsiveness | |||
ACE | CTAACGTATT | 与光响应性有关的顺式作用元件cis-acting element involved in light responsiveness | 1 |
TCA-element | CCATCTTTTT | 参与水杨酸反应的顺式作用元件 | 1 |
cis-acting element involved in salicylic acid responsiveness | |||
ABRE | ACGTG | 参与脱落酸反应的顺式元件 | 2 |
AACCCGG | cis-acting element involved in the abscisic acid responsiveness | 1 | |
ARE | AAACCA | 对厌氧诱导必不可少的顺式调节元件 | 2 |
cis-acting regulatory element essential for the anaerobic induction | |||
AuxRR-core | GGTCCAT | 参与生长素反应性的顺式调控元件 | 1 |
cis-acting regulatory element involved in auxin responsiveness | |||
G-box | TACGTG | 参与光响应的顺式调节元件 | 2 |
cis-acting regulatory element involved in light responsiveness | |||
TGACG-motif | CGTCA | 参与MeJA反应的顺式作用调控元件 | 3 |
TGACG | cis-acting regulatory element involved in the MeJA-responsiveness | 3 | |
CAAT-box | CAAAT | 启动子和增强子区域中常见的顺式作用元件 | 14 |
CCAAT | Common cis-acting element in promoter and enhancer regions | 7 | |
TATA-box | ATATAA | 核心启动子元件在转录开始的-30左右 | 3 |
ATATAT | Core promoter element around -30 of transcription start-30左右 | 3 | |
ATTATA | 6 | ||
TACAAAA | 2 | ||
TATA | 20 | ||
TATAA | 6 | ||
TATAAA | 1 | ||
TATAAAT | 1 | ||
TATAAATA | 1 | ||
TATACA | 3 | ||
TATATA | 3 | ||
TATATAA | 2 | ||
taTATAAAtc | 1 | ||
TATATTTATATTT | 1 | ||
TATTTAAA | 1 | ||
GT1-motif | GGTTAA | 光响应元件Light responsive element | 2 |
MRE | AACCTAA | MYB结合位点参与光响应性MYB binding site involved in light esponsiveness | 2 |
Box 4 | ATTAAT | 与光反应有关的保守DNA模块的一部分 | 5 |
Part of a conserved DNA module involved in light responsiveness | |||
TCT-motif | TCTTAC | 光响应元件的一部分Part of a light responsive element | 1 |
GATA-motif | GATAGGA | 光响应元件的一部分Part of a light responsive element | 1 |
TGA-box | TGACGTAA | 生长素反应元件的一部分Part of an auxin-responsive element | 1 |
图7 SlMYB52蛋白的亚细胞定位 GFP表示GFP荧光,Nucleus表示核定位,Bright表示明场,Merged表示叠加图。
Fig.7 Subcellular localization of SlMYB52 protein GFP stands for GFP fluorescence, Nucleus stands for nuclear localization, Bright stands for bright field, Merged stands for superposition.
图8 SlMYB52在番茄不同组织中的表达情况 不同处理间没有相同小写字母表示差异显著(P<0.05)。下同。
Fig.8 Expression of SlMYB52 in different tissues of tomato The bars with different lowercase letters indicate significant difference(P<0.05). The same as below.
图9 SlMYB52在高盐(A)、低温(B)、干旱(C)及辣椒疫霉菌侵染(D)胁迫条件下的表达情况 *代表在5%概率水平上差异显著(P<0.05)。
Fig.9 Expression of SlMYB52 under high salt (A), low temperature (B), drought (C) and Phytophthora capsici-infected (D) stress * indicates significant difference at P<0.05.
[1] | KAJAL, OJHA R, LOHANI P, et al. Engineering the transcriptional regulatory network to improve abiotic stress tolerance in crop plants: taming the tough time[J]. Journal of Plant Growth Regulation, 2024, 43(1): 25-37. |
[2] | NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432. |
[3] | 胡若琳, 袁超, 牛义, 等. 植物MYB转录因子在花药发育中的调控作用[J]. 生物工程学报, 2020, 36(11): 2277-2286. |
HU R L, YUAN C, NIU Y, et al. Regulation of plant MYB transcription factors in anther development[J]. Chinese Journal of Biotechnology, 2020, 36(11): 2277-2286. (in Chinese with English abstract) | |
[4] | GATICA-ARIAS A, FARAG M A, STANKE M, et al. Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L.[J]. Plant Cell Reports, 2012, 31: 111-119. |
[5] | 张振, 徐志璇, 王丽娜, 等. 过表达SlMYB75对番茄幼苗、果实及种子的影响[J]. 山东农业大学学报(自然科学版), 2019, 50(6): 937-943. |
ZHANG Z, XU Z X, WANG L N, et al. Effects of overexpression of SlMYB75 on tomato seedlings, fruits and seeds[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2019, 50(6): 937-943. (in Chinese with English abstract) | |
[6] | 邱文怡, 王诗雨, 李晓芳, 等. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
QIU W Y, WANG S Y, LI X F, et al. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1317-1328. (in Chinese with English abstract) | |
[7] | 江舟, 韩丽君. 茄科植物转录因子MYB基因家族研究现状[J]. 现代园艺, 2023, 46(18): 187-189. |
JIANG Z, HAN L J. Research status of MYB gene family of transcription factors in Solanaceae plants[J]. Contemporary Horticulture, 2023, 46(18): 187-189. (in Chinese) | |
[8] | OGATA K, MORIKAWA S, NAKAMURA H, et al. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices[J]. Cell, 1994, 79(4): 639-648. |
[9] | MA D W, PETER CONSTABEL C. MYB repressors as regulators of phenylpropanoid metabolism in plants[J]. Trends in Plant Science, 2019, 24(3): 275-289. |
[10] | 艾佳琦, 庞鸿涛, 胡天华, 等. 茄果类蔬菜MYB转录因子研究进展[J]. 中国蔬菜, 2023(6): 23-33. |
AI J Q, PANG H T, HU T H, et al. Research progress on MYB transcription factors of solanaceous fruit vegetable[J]. China Vegetables, 2023(6): 23-33. (in Chinese with English abstract) | |
[11] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
WEI X X, LAN H Y. Advances in the regulation of plant MYB transcription factors in secondary metabolism and stress response[J]. Biotechnology Bulletin, 2022, 38(8): 12-23. (in Chinese with English abstract) | |
[12] | GENG P, ZHANG S, LIU J Y, et al. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation[J]. Plant Physiology, 2020, 182(3): 1272-1283. |
[13] | LIU X F, YIN X R, ALLAN A C, et al. The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis[J]. Plant Cell, Tissue and Organ Culture, 2013, 115: 285-298. |
[14] | TYAGI K, SUNKUM A, RAI M, et al. Seeing the unseen: a trifoliate (MYB117) mutant allele fortifies folate and carotenoids in tomato fruits[J]. The Plant Journal, 2022, 112(1): 38-54. |
[15] | WANG F B, KONG W L, WONG G, et al. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana[J]. Molecular Genetics and Genomics, 2016, 291(4): 1545-1559. |
[16] | NAKABAYASHI R, YONEKURA-SAKAKIBARA K, URANO K, et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J]. The Plant Journal, 2014, 77(3): 367-379. |
[17] | 赵盼盼. 番茄R2R3MYB转录因子家族鉴定及SlMYB41和SlMYB64基因功能研究[D]. 泰安: 山东农业大学, 2017. |
ZHAO P P. Genome-wide identification of R2R3MYB gene family and functional analysis of SlMYB41 and SlMYB64 in tomato[J]. Taian: Shandong Agricultural University, 2017. (in Chinese with English abstract) | |
[18] | ZHANG L Y, JIANG X C, LIU Q Y, et al. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway[J]. Plant, Cell & Environment, 2020, 43(11): 2712-2726. |
[19] | QI S M, ZHANG S J, ISLAM M M, et al. Natural resources resistance to tomato spotted wilt virus (TSWV) in tomato (Solanum lycopersicum)[J]. International Journal of Molecular Sciences, 2021, 22(20): 10978. |
[20] | 倪红艳, 王庆芬, 张乐, 等. 设施番茄高效栽培技术应用与推广[J]. 新农民, 2024(11): 78-80. |
NI H Y, WANG Q F, ZHANG L, et al. Application and promotion of efficient cultivation techniques for facility tomatoes[J]. New Farmers, 2024(11): 78-80. (in Chinese) | |
[21] | 田永强, 高丽红. 设施番茄高品质栽培理论与技术[J]. 中国蔬菜, 2021(2): 30-40. |
TIAN Y Q, GAO L H. Theory and technology for facility cultivation of high-quality tomato[J]. China Vegetables, 2021(2): 30-40. (in Chinese with English abstract) | |
[22] | QUINET M, ANGOSTO T, YUSTE-LISBONA F J, et al. Tomato fruit development and metabolism[J]. Frontiers in Plant Science, 2019, 10: 1554. |
[23] | STOLERU V, INCULET S C, MIHALACHE G, et al. Yield and nutritional response of greenhouse grown tomato cultivars to sustainable fertilization and irrigation management[J]. Plants, 2020, 9(8): 1053. |
[24] | 苏常红, 寻雅雯, 宋子豪. CaCl2、甜菜碱、5-氨基乙酰丙酸提升番茄耐低温弱光研究[J]. 山西大学学报(自然科学版), 2023, 46(5): 1217-1226. |
SU C H, XUN Y W, SONG Z H. Study of the chilling and low light tolerance of tomato improved by CaCl2, Glycine betaine, and 5-aminolevulinic acid[J]. Journal of Shanxi University(Natural Science Edition), 2023, 46(5): 1217-1226. (in Chinese with English abstract) | |
[25] | MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. |
[26] | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4): 402-408. |
[27] | 许玲, 王元琮, 何晓兰, 等. 大豆转录因子GmMYB52的克隆、表达及结合功能分析[J]. 作物学报, 2017, 43(10): 1458-1467. |
XU L, WANG Y C, HE X L, et al. Isolation, expression and binding function analysis of the transcription factor GmMYB52 in soybean[J]. Acta Agronomica Sinica, 2017, 43(10): 1458-1467. (in Chinese with English abstract) | |
[28] | 张群华, 方玉占, 杜建科, 等. 园艺植物R2R3-MYB转录因子研究现状[J]. 分子植物育种, 2024, 22(1): 85-96. |
ZHANG Q H, FANG Y Z, DU J K, et al. Research status of R2R3-MYB transcription factors in horticultural plants[J]. Molecular Plant Breeding, 2024, 22(1): 85-96. (in Chinese with English abstract) | |
[29] | LUO Q, LIU R X, ZENG L G, et al. Isolation and molecular characterization of NtMYB4a, a putative transcription activation factor involved in anthocyanin synthesis in tobacco[J]. Gene, 2020, 760: 144990. |
[30] | DE ZELICOURT A, COLCOMBET J, HIRT H. The role of MAPK modules and ABA during abiotic stress signaling[J]. Trends in Plant Science, 2016, 21(8): 677-685. |
[31] | YOSHIDA T, FUJITA Y, SAYAMA H, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation[J]. The Plant Journal, 2010, 61(4): 672-685. |
[32] | XIANG Y, TANG N, DU H, et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiology, 2008, 148(4): 1938-1952. |
[33] | 吴小亲. SlMYB64参与番茄植株生长及花粉萌发的初步研究[D]. 泰安: 山东农业大学, 2016. |
WU X Q. Preliminary study on SlMYB64 involved in plant growth and pollen germination in tomato[D]. Taian: Shandong Agricultural University 2016. (in Chinese with English abstract) | |
[34] | 沈峰屹. 番茄SLMYB14基因响应非生物胁迫的功能分析[D]. 哈尔滨: 东北农业大学, 2021. |
SHEN F Y. Functional analysis of SLMYB14 gene of tomato in response to abiotic stess[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese with English abstract) | |
[35] | CUI J, JIANG N, ZHOU X X, et al. Tomato MYB49 enhances resistance to Phytophthora infestans and tolerance to water deficit and salt stress[J]. Planta, 2018, 248(6): 1487-1503. |
[1] | 张美莹, 莫倩, 齐秀双, 佟宁宁, 孔凡, 刘政安, 吕长平, 彭丽平. 牡丹PoLPAT2基因的克隆及表达分析[J]. 浙江农业学报, 2025, 37(2): 321-328. |
[2] | 李腾飞, 杨桂玲, 阮美颖, 褚田芬, 秦华, 邓美华. 不同肥药管理对设施番茄生产系统土壤健康与番茄性状的影响[J]. 浙江农业学报, 2025, 37(1): 145-158. |
[3] | 谷瑞, 宋翠玲, 钱春花. 融合沙漏结构与改进坐标注意力的轻量级番茄叶片病害识别模型[J]. 浙江农业学报, 2025, 37(1): 217-230. |
[4] | 朱贵爽, 李艳肖, 张安宁, 孙浩楠, 徐兴源, 李志刚, 向殿军. 蓖麻GeBP转录因子的全基因组鉴定与GeBP2基因的克隆、表达分析[J]. 浙江农业学报, 2024, 36(8): 1731-1740. |
[5] | 蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843. |
[6] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
[7] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
[8] | 郭娜纳, 李伟, 黄立娟, 张涛, 魏兵强. 辣椒抗番茄斑萎病毒研究进展[J]. 浙江农业学报, 2024, 36(10): 2416-2425. |
[9] | 李必元, 岳智臣, 赵彦婷, 雷娟利, 胡齐赞, 陶鹏. 大白菜番茄红素β-环化酶基因BrLCYB的鉴定与功能分析[J]. 浙江农业学报, 2023, 35(9): 2090-2096. |
[10] | 孙丽娟, 李世民, 郭焕仙, 金友帆, 李树萍, 董琼. 树番茄幼苗生长与氮磷钾化学计量特征对光照、肥料的响应[J]. 浙江农业学报, 2023, 35(8): 1793-1804. |
[11] | 庞雪晴, 唐诗, 曾红梅, 赵位, 王印, 罗燕, 姚学萍, 任梅渗, 任永军, 杨泽晓. 两株GI.1型和GI.2型兔出血症病毒RdRp基因的克隆与分析[J]. 浙江农业学报, 2023, 35(6): 1286-1296. |
[12] | 张新业, 李文静, 朱姝, 孙艳香, 王聪艳, 闫训友, 周志国. 三种伞形科蔬菜作物棕榈酰基转移酶基因家族的鉴定与分析[J]. 浙江农业学报, 2023, 35(6): 1315-1327. |
[13] | 宋雅萍, 雷召雄, 赵毅昂, 姜超, 王兴平, 罗仍卓么, 马云, 魏大为. 牛FoxO1基因CDS区克隆及其在脂肪细胞分化过程中的表达分析[J]. 浙江农业学报, 2023, 35(5): 1016-1027. |
[14] | 燕存尧, 贾凯, 闫会转, 高杰. 芜菁BrrLOX7基因克隆、表达及生物信息学分析[J]. 浙江农业学报, 2023, 35(4): 831-840. |
[15] | 娄茜棋, 梁燕. 五类不同果色番茄种质资源品质分析[J]. 浙江农业学报, 2023, 35(3): 582-589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||