浙江农业学报 ›› 2024, Vol. 36 ›› Issue (8): 1832-1843.DOI: 10.3969/j.issn.1004-1524.20231173
蒋文骏1(), 舒红锁2, 陈正满3, 任典挺2, 杨党1,4, 田荣江1, 杜照奎1,4,*(
)
收稿日期:
2023-10-09
出版日期:
2024-08-25
发布日期:
2024-09-06
作者简介:
*杜照奎,E-mail: dzk@tzc.edu.cn通讯作者:
杜照奎
基金资助:
JIANG Wenjun1(), SHU Hongsuo2, CHEN Zhengman3, REN Dianting2, YANG Dang1,4, TIAN Rongjiang1, DU Zhaokui1,4,*(
)
Received:
2023-10-09
Online:
2024-08-25
Published:
2024-09-06
Contact:
DU Zhaokui
摘要:
转录因子WRKY在开花植物中广泛存在,参与并调节植物的生长发育与防御反应等。为探究红树植物秋茄WRKY基因在非生物胁迫过程中的作用,以秋茄幼苗为试验材料,提取叶片总RNA,通过反转录PCR(RT-PCR)技术克隆获得KoWRKY43基因(GenBank登录号OR789874),采用生物信息学手段分析其基因序列和蛋白质结构特点,利用实时荧光定量PCR(qRT-PCR)技术研究其表达模式。结果表明,KoWRKY43基因开放阅读框(ORF)为942 bp,编码313个氨基酸,蛋白质分子式为C1484H2415N439O459S14,分子量为34.2 ku,理论等电点为9.74,无信号肽,无跨膜结构,定位于细胞核,与木薯、银白杨和簸箕柳亲缘关系相对较近。qPCR检测显示,KoWRKY43基因在秋茄根中表达量最大,显著高于茎、叶、花和果实;幼叶KoWRKY43的表达量受NaCl诱导持续上升,在24 h表达量最大;激素水杨酸和脱落酸的诱导使其表达量先升高后降低,在6 h达到峰值;茉莉酸甲酯在24 h内均未显著改变其表达水平。研究结果为后续开展KoWRKY43基因的功能研究和培育抗逆秋茄品种提供了理论基础。
中图分类号:
蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843.
JIANG Wenjun, SHU Hongsuo, CHEN Zhengman, REN Dianting, YANG Dang, TIAN Rongjiang, DU Zhaokui. Cloning, expression, and bioinformatics analysis of KoWRKY43 gene in Kandelia obovata[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1832-1843.
基因 Gene | 上游引物 Forward primer(5'→3') | 下游引物 Reverse primer(5'→3') | 用途 Purpose |
---|---|---|---|
KoWRKY43 | ATGGATGAGACCACGCCGGA | CTAAAATATCTCATGATAAC | 基因扩增Gene amplification |
KoWRKY43 | CACCGATCCAGCAGATTCCC | ACAAGAAGGACGAAAGCGGA | 实时荧光定量PCR Real-time fluorogenic quantitative PCR |
18S rRNA | GGGGCTCGAAGACGATCAGA | TTAAGCCGCAGGCTCCACTC | 内参基因Internal reference gene |
表1 引物信息
Table 1 Information of primers
基因 Gene | 上游引物 Forward primer(5'→3') | 下游引物 Reverse primer(5'→3') | 用途 Purpose |
---|---|---|---|
KoWRKY43 | ATGGATGAGACCACGCCGGA | CTAAAATATCTCATGATAAC | 基因扩增Gene amplification |
KoWRKY43 | CACCGATCCAGCAGATTCCC | ACAAGAAGGACGAAAGCGGA | 实时荧光定量PCR Real-time fluorogenic quantitative PCR |
18S rRNA | GGGGCTCGAAGACGATCAGA | TTAAGCCGCAGGCTCCACTC | 内参基因Internal reference gene |
图1 秋茄叶片总RNA电泳图 泳道M,DNA marker DL 2 000;泳道1,提取的总RNA。
Fig.1 Electrophoresis image of total RNA from Kandelia obovata leaf Lane M, DNA marker DL 2 000; Lane 1, Total RNA.
图2 KoWRKY43基因的PCR扩增 泳道M,DNA marker DL 2 000;泳道1和2,KoWRKY43基因。
Fig.2 The PCR result of KoWRKY43 gene Lane M, DNA marker DL 2 000; Lane 1 and 2, KoWRKY43 gene.
图3 KoWRKY43基因的cDNA序列和预测氨基酸序列 红色和蓝色下划线分别代表KoWRKY43蛋白N端WRKYGQK和C端CX5CX23HXH保守序列。
Fig.3 Coding sequence and predicted amino acid sequence of KoWRKY43 gene Red and blue underlines represent the N-terminal WRKYGQK and C-terminal CX5CX23HXH conserved sequences of KoWRKY43 protein, respectively.
氨基酸种类 Type of amino acid | 数量 Quantity | 占氨基酸总量的百分比 Percent of total amino acids/% | 氨基酸的种类 Type of amino acid | 数量 Quantity | 占氨基酸总量的百分比 Percent of total amino acids/% |
---|---|---|---|---|---|
丙氨酸Alanine | 25 | 8.00 | 亮氨酸Leucine | 22 | 7.00 |
精氨酸Arginine | 20 | 6.40 | 赖氨酸Lysine | 26 | 8.30 |
天冬氨酰Asparagine | 15 | 4.80 | 甲硫氨酸Methionine | 7 | 2.20 |
天冬氨酸Aspartic acid | 15 | 4.80 | 苯丙氨酸Phenylalanine | 8 | 2.60 |
半胱氨酸Cysteine | 7 | 2.20 | 脯氨酸Proline | 22 | 7.00 |
谷氨酰胺Glutamine | 12 | 3.80 | 丝氨酸Serine | 43 | 13.70 |
谷氨酸Glutamic acid | 12 | 3.80 | 苏氨酸Threonine | 13 | 4.20 |
甘氨酸Glycine | 15 | .80 | 色氨酸Tryptophan | 1 | 0.30 |
组氨酸Histidine | 6 | 1.90 | 酪氨酸Tyrosine | 8 | 2.60 |
异亮氨酸Isoleucine | 13 | 4.20 | 缬氨酸Valine | 23 | 7.30 |
表2 KoWRKY43蛋白的氨基酸组成
Table 2 Amino acid composition of KoWRKY43 protein
氨基酸种类 Type of amino acid | 数量 Quantity | 占氨基酸总量的百分比 Percent of total amino acids/% | 氨基酸的种类 Type of amino acid | 数量 Quantity | 占氨基酸总量的百分比 Percent of total amino acids/% |
---|---|---|---|---|---|
丙氨酸Alanine | 25 | 8.00 | 亮氨酸Leucine | 22 | 7.00 |
精氨酸Arginine | 20 | 6.40 | 赖氨酸Lysine | 26 | 8.30 |
天冬氨酰Asparagine | 15 | 4.80 | 甲硫氨酸Methionine | 7 | 2.20 |
天冬氨酸Aspartic acid | 15 | 4.80 | 苯丙氨酸Phenylalanine | 8 | 2.60 |
半胱氨酸Cysteine | 7 | 2.20 | 脯氨酸Proline | 22 | 7.00 |
谷氨酰胺Glutamine | 12 | 3.80 | 丝氨酸Serine | 43 | 13.70 |
谷氨酸Glutamic acid | 12 | 3.80 | 苏氨酸Threonine | 13 | 4.20 |
甘氨酸Glycine | 15 | .80 | 色氨酸Tryptophan | 1 | 0.30 |
组氨酸Histidine | 6 | 1.90 | 酪氨酸Tyrosine | 8 | 2.60 |
异亮氨酸Isoleucine | 13 | 4.20 | 缬氨酸Valine | 23 | 7.30 |
图6 KoWRKY43蛋白二级结构预测 蓝色代表α螺旋;红色代表延伸链;绿色代表β转角;紫色代表无规卷曲。
Fig.6 Secondary structure prediction of KoWRKY43 protein Blue, α-Helix; Red, Extended chain; Green, β-Turn; Purple, Random coil.
图10 秋茄KoWRKY43基因上游2 000 bp启动子区顺式作用元件预测 ARE,抗氧化反应元件;ABRE,ABA响应元件;MYB,MYB结合位点;AuxRR,生长素响应元件。
Fig.10 Prediction of cis-acting elements in the upstream 2 000 bp promoter region of Kandelia obovata KoWRKY43 gene ARE, Antioxidant responsive element; ABRE, ABA-responsive element; MBS, MYB binding site; AuxRR, Auxin-responsive element.
图11 KoWRKY43基因在秋茄不同器官中的相对表达量 叶中的相对表达量作为其他器官表达量的相对标准,定义为1。误差线表示标准误,不同小写字母表示在0.05水平上器官间差异显著。
Fig.11 Relative expression levels of KoWRKY43 gene in different organs of Kandelia obovata The expression level in leaf is defined as a relative standard for the expression of other organs, with error bars indicating standard error, and different lowercase letters indicate significant differences among organs at the 0.05 level.
图12 NaCl、水杨酸、脱落酸和茉莉酸甲酯胁迫下秋茄叶片中KoWRKY43基因的表达量变化 A,200 mmol·L-1 NaCl胁迫;B,100 μmol·L-1水杨酸胁迫;C,100 μmol·L-1脱落酸胁迫;D,100 μmol·L-1茉莉酸甲酯胁迫。处理时间为0 h的表达量作为其他处理时间表达量的相对标准,定义为1;误差线表示标准误,柱上无相同小写字母表示在0.05水平上不同处理时间的表达量差异显著。
Fig.12 Expression changes of KoWRKY43 gene in the leaf of Kandelia obovata under stress conditions of NaCl, salicylic acid, abscisic acid, and methyl jasmonate A, 200 mmol·L-1 NaCl stress; B, 100 μmol·L-1 salicylic acid stress; C, 100 μmol·L-1 abscisic acid stress; D, 100 μmol·L-1 methyl jasmonate stress. The expression level at 0 h is defined as a relative standard for other treatment times, defined as 1, error bars represent standard errors, and bars without the same lowercase letters indicate significant differences in expression levels at different treatment times at the 0.05 level.
[1] | SONG H, SUN W H, YANG G F, et al. WRKY transcription factors in legumes[J]. BMC Plant Biology, 2018, 18(1): 243. |
[2] | ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Molecular & General Genetics, 1994, 244(6): 563-571. |
[3] | WU K L, GUO Z J, WANG H H, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Research, 2005, 12(1): 9-26. |
[4] | 仇玉萍, 荆邵娟, 付坚, 等. 13个水稻WRKY基因的克隆及其表达谱分析[J]. 科学通报, 2004, 49(18): 1860-1869. |
QIU Y P, JING S J, FU J, et al. Cloning and expression profile analysis of 13 rice WRKY genes[J]. Chinese Science Bulletin, 2004, 49(18): 1860-1869. (in Chinese with English abstract) | |
[5] | YIN G J, XU H L, XIAO S Y, et al. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups[J]. BMC Plant Biology, 2013, 13: 148. |
[6] | WEI K F, CHEN J, CHEN Y F, et al. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize[J]. DNA Research, 2012, 19(2): 153-164. |
[7] | RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5): 247-258. |
[8] | JIANG J J, MA S H, YE N H, et al. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 2017, 59(2): 86-101. |
[9] | 林鹏. 中国红树林研究进展[J]. 厦门大学学报(自然科学版), 2001, 40(2): 592-603. |
LIN P. A review on the mangrove research in China[J]. Journal of Xiamen University(Natural Science), 2001, 40(2): 592-603. (in Chinese with English abstract) | |
[10] | 廖宝文, 张乔民. 中国红树林的分布、面积和树种组成[J]. 湿地科学, 2014, 12(4): 435-440. |
LIAO B W, ZHANG Q M. Area, distribution and species composition of mangroves in China[J]. Wetland Science, 2014, 12(4): 435-440. (in Chinese with English abstract) | |
[11] | 范航清, 王文卿. 中国红树林保育的若干重要问题[J]. 厦门大学学报(自然科学版), 2017, 56(3): 323-330. |
FAN H Q, WANG W Q. Some thematic issues for mangrove conservation in China[J]. Journal of Xiamen University (Natural Science), 2017, 56(3): 323-330. (in Chinese with English abstract) | |
[12] | 陈鹭真, 王文卿, 张宜辉, 等. 2008年南方低温对我国红树植物的破坏作用[J]. 植物生态学报, 2010, 34(2): 186-194. |
CHEN L Z, WANG W Q, ZHANG Y H, et al. Damage to mangroves from extreme cold in early 2008 in southern China[J]. Chinese Journal of Plant Ecology, 2010, 34(2): 186-194. (in Chinese with English abstract) | |
[13] | 陈秋夏, 杨升, 王金旺, 等. 浙江红树林发展历程及探讨[J]. 浙江农业科学, 2019, 60(7): 1177-1181. |
CHEN Q X, YANG S, WANG J W, et al. Development history and discussion of mangrove forest in Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(7): 1177-1181. (in Chinese) | |
[14] | DU Z K, YOU S X, YANG D, et al. Comprehensive analysis of the NAC transcription factor gene family in Kandelia obovata reveals potential members related to chilling tolerance[J]. Frontiers in Plant Science, 2022, 13: 1048822. |
[15] | HOANG X L T, NHI D N H, THU N B A, et al. Transcription factors and their roles in signal transduction in plants under abiotic stresses[J]. Current Genomics, 2017, 18(6): 483-497. |
[16] | LIU W, LIANG X Q, CAI W J, et al. Isolation and functional analysis of VvWRKY28, a Vitis vinifera WRKY transcription factor gene, with functions in tolerance to cold and salt stress in transgenic Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2022, 23(21): 13418. |
[17] | DAI Z G, WEI M Y, ZHANG B X, et al. VuWRKY, a group I WRKY gene from Vaccinium uliginosum, confers tolerance to cold and salt stresses in plant[J]. Plant Cell, Tissue and Organ Culture, 2021, 147(1): 157-168. |
[18] | ZHU L, LI S L, OUYANG M Z, et al. Overexpression of watermelon ClWRKY20 in transgenic Arabidopsis improves salt and low-temperature tolerance[J]. Scientia Horticulturae, 2022, 295: 110848. |
[19] | DU Z K, YOU S X, ZHAO X, et al. Genome-wide identification of WRKY genes and their responses to chilling stress in Kandelia obovata[J]. Frontiers in Genetics, 2022, 13: 875316. |
[20] | LI W X, PANG S Y, LU Z G, et al. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants[J]. Plants, 2020, 9(11): 1515. |
[21] | BAKSHI M, OELMÜLLER R. WRKY transcription factors: jack of many trades in plants[J]. Plant Signaling & Behavior, 2014, 9(2): e27700. |
[22] | CHEN X J, LI C, WANG H, et al. WRKY transcription factors: evolution, binding, and action[J]. Phytopathology Research, 2019, 1(1): 13. |
[23] | HUANG Z, LIU L, JIAN L L, et al. Heterologous expression of MfWRKY7 of resurrection plant Myrothamnus flabellifolia enhances salt and drought tolerance in Arabidopsis[J]. International Journal of Molecular Sciences, 2022, 23(14): 7890. |
[24] | 张文静, 李思, 刘杨, 等. 中间锦鸡儿WRKY15基因克隆及其生物信息学分析[J]. 中国草地学报, 2019, 41(4): 23-31. |
ZHANG W J, LI S, LIU Y, et al. Cloning and bioinformatics analysis of CiWRKY15 gene in Caragana intermedia[J]. Chinese Journal of Grassland, 2019, 41(4): 23-31. (in Chinese with English abstract) | |
[25] | 张旭, 凌辉, 刘峰, 等. 一个甘蔗Ⅱd类WRKY转录因子基因的克隆和表达分析[J]. 中国农业科学, 2018, 51(23): 4409-4423. |
ZHANG X, LING H, LIU F, et al. Cloning and expression analysis of a Ⅱd sub-group WRKY transcription factor gene from sugarcane[J]. Scientia Agricultura Sinica, 2018, 51(23): 4409-4423. (in Chinese with English abstract) | |
[26] | CHEN X, CHEN R H, WANG Y F, et al. Genome-wide identification of WRKY transcription factors in Chinese jujube (Ziziphus jujuba Mill.) and their involvement in fruit developing, ripening, and abiotic stress[J]. Genes, 2019, 10(5): 360. |
[27] | GAO Y F, LIU J K, YANG F M, et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum[J]. Physiologia Plantarum, 2020, 168(1): 98-117. |
[28] | CAI R H, ZHAO Y, WANG Y F, et al. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice[J]. Plant Cell, Tissue and Organ Culture, 2014, 119(3): 565-577. |
[29] | 窦玲玲, 李光雷, 庞朝友, 等. 棉花转录因子GhWRKY11的克隆及功能分析[J]. 农业生物技术学报, 2016, 24(5): 625-636. |
DOU L L, LI G L, PANG C Y, et al. Cloning and function analysis of GhWRKY11 in cotton (Gossypium hirsutum)[J]. Journal of Agricultural Biotechnology, 2016, 24(5): 625-636. (in Chinese with English abstract) | |
[30] | 郭芬, 孟小庆, 刘思媛, 等. 甘薯WRKY转录因子编码基因IbWRKY53L的生物信息学及表达特性分析[J]. 江苏师范大学学报(自然科学版), 2022, 40(4): 22-27. |
GUO F, MENG X Q, LIU S Y, et al. Bioinformatics and expression characteristics of the sweetpotato WRKY transcription factor encoding gene IbWRKY53L[J]. Journal of Jiangsu Normal University(Natural Science Edition), 2022, 40(4): 22-27. (in Chinese with English abstract) | |
[31] | LI H L, GUO D, YANG Z P, et al. Genome-wide identification and characterization of WRKY gene family in Hevea brasiliensis[J]. Genomics, 2014, 104(1): 14-23. |
[32] | GU L J, WEI H L, WANG H T, et al. Characterization and functional analysis of GhWRKY42, a group Ⅱd WRKY gene, in upland cotton (Gossypium hirsutum L.)[J]. BMC Genetics, 2018, 19(1): 48. |
[33] | RAINERI J, RIBICHICH K F, CHAN R L. The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty[J]. Plant Cell Reports, 2015, 34(12): 2065-2080. |
[1] | 孙培媛, 冉彬, 王佳蕊, 李洪有. 苦荞FtDELLA基因的克隆与表达分析[J]. 浙江农业学报, 2024, 36(8): 1709-1718. |
[2] | 朱贵爽, 李艳肖, 张安宁, 孙浩楠, 徐兴源, 李志刚, 向殿军. 蓖麻GeBP转录因子的全基因组鉴定与GeBP2基因的克隆、表达分析[J]. 浙江农业学报, 2024, 36(8): 1731-1740. |
[3] | 诸燕, 丁兰, 陈忆乾, 黄秀静, 姜伟伟, 陈东红. 铁皮石斛CLE基因家族鉴定与功能分析[J]. 浙江农业学报, 2024, 36(7): 1583-1590. |
[4] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
[5] | 陈尚昱, 宋雪薇, 齐振宇, 周艳虹, 喻景权, 夏晓剑. 植物侧枝发育的遗传基础及激素、代谢与环境调控[J]. 浙江农业学报, 2024, 36(3): 690-703. |
[6] | 宋传生, 康晓飞, 樊庆忠, 王俊刚, 石雪, 张子汝, 谭青青, 曾小娇, 刘芳, 李英赛, 侯常跃. 枣疯病植原体胸苷激酶基因的克隆、序列分析与原核表达[J]. 浙江农业学报, 2023, 35(8): 1763-1772. |
[7] | 王智豪, 奚昕琰, 王莉, 杨淑娜, 高志远, 殷益明, 邹辉, 贾惠娟. 浙北地区红美人杂柑成花过程及其生理生化特征[J]. 浙江农业学报, 2023, 35(7): 1571-1581. |
[8] | 徐红霞, 李晓颖, 葛航, 朱启轩, 陈俊伟. 基于转录组分析内源激素在调控枇杷花发育进程中的作用[J]. 浙江农业学报, 2023, 35(7): 1648-1661. |
[9] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[10] | 朱燕, 魏佳, 许自龙, 林天宝, 杨升, 刘岩, 吕志强, 刘培刚. 促生长植物激素对桑树叶片衰老过程生理生化指标的影响[J]. 浙江农业学报, 2023, 35(6): 1278-1285. |
[11] | 庞雪晴, 唐诗, 曾红梅, 赵位, 王印, 罗燕, 姚学萍, 任梅渗, 任永军, 杨泽晓. 两株GI.1型和GI.2型兔出血症病毒RdRp基因的克隆与分析[J]. 浙江农业学报, 2023, 35(6): 1286-1296. |
[12] | 张新业, 李文静, 朱姝, 孙艳香, 王聪艳, 闫训友, 周志国. 三种伞形科蔬菜作物棕榈酰基转移酶基因家族的鉴定与分析[J]. 浙江农业学报, 2023, 35(6): 1315-1327. |
[13] | 莘晓月, 刘鹏. 激素调控种子休眠与萌发分子机制研究进展[J]. 浙江农业学报, 2023, 35(6): 1485-1496. |
[14] | 宋雅萍, 雷召雄, 赵毅昂, 姜超, 王兴平, 罗仍卓么, 马云, 魏大为. 牛FoxO1基因CDS区克隆及其在脂肪细胞分化过程中的表达分析[J]. 浙江农业学报, 2023, 35(5): 1016-1027. |
[15] | 姚彦林, 马骊, 刘丽君, 蒲媛媛, 李学才, 王旺田, 方彦, 孙万仓, 武军艳. 白菜型油菜开花调控基因BrFT的生物信息学特性和表达分析[J]. 浙江农业学报, 2023, 35(5): 992-1000. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||