浙江农业学报 ›› 2024, Vol. 36 ›› Issue (8): 1709-1718.DOI: 10.3969/j.issn.1004-1524.20230913
收稿日期:
2023-07-26
出版日期:
2024-08-25
发布日期:
2024-09-06
作者简介:
*李洪有,E-mail: lihongyouluod@163.com通讯作者:
李洪有
基金资助:
SUN Peiyuan(), RAN Bin, WANG Jiarui, LI Hongyou(
)
Received:
2023-07-26
Online:
2024-08-25
Published:
2024-09-06
Contact:
LI Hongyou
摘要:
DELLA蛋白是赤霉素(GA)传导途径中的负调控蛋白,其在植物生长发育和胁迫响应中起着重要作用。该实验利用RT-PCR技术从苦荞中克隆到一个DELLA基因,命名为FtDELLA。克隆得到FtDELLA基因CDS全长1 452 bp,编码483个氨基酸。蛋白多序列比对显示,FtDELLA蛋白含有DELLA蛋白家族保守的DELLA保守结构域;系统进化分析表明,FtDELLA蛋白与拟南芥中AtRGA1亲缘关系最近。qRT-PCR结果显示,FtDELLA在苦荞不同组织部位均有表达,其中在茎和灌浆前的种子中表达量最高,在苦荞种子发育过程中,FtDELLA表达量呈逐渐下降趋势。在干旱胁迫下,FtDELLA的表达明显受到抑制,表明其可能是苦荞干旱胁迫应答的一个负调控基因。该研究结果为进一步研究FtDELLA在苦荞中的功能和作用机制提供了理论基础。
中图分类号:
孙培媛, 冉彬, 王佳蕊, 李洪有. 苦荞FtDELLA基因的克隆与表达分析[J]. 浙江农业学报, 2024, 36(8): 1709-1718.
SUN Peiyuan, RAN Bin, WANG Jiarui, LI Hongyou. Cloning and expression analysis of Fagopyrum tataricum FtDELLA gene[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1709-1718.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
FtDELLA-kF | ATGCCTGCAGGTCCGACGAT |
FtDELLA-kR | TCAAGTCTCAGCCGAGTTTCG |
FtDELLA-qF | TTCCATCACAGAGCTTCACC |
FtDELLA-qR | GTTGTGGTTCGCCTCTTGTT |
FtHLK-qF | TTCACGGGCACCATTCATGG |
FtHLK-qR | AGGTGGAAGCTGAAGGAAGC |
FtUPL7-qF | ATGTTGTGGGACGTGTGGTT |
FtUPL7-qR | AAGCGATCCTCTGGTGATAG |
表1 本研究所用引物序列
Table 1 Primer sequences used in this study
引物名称 Primer name | 引物序列 Primer sequence(5'-3') |
---|---|
FtDELLA-kF | ATGCCTGCAGGTCCGACGAT |
FtDELLA-kR | TCAAGTCTCAGCCGAGTTTCG |
FtDELLA-qF | TTCCATCACAGAGCTTCACC |
FtDELLA-qR | GTTGTGGTTCGCCTCTTGTT |
FtHLK-qF | TTCACGGGCACCATTCATGG |
FtHLK-qR | AGGTGGAAGCTGAAGGAAGC |
FtUPL7-qF | ATGTTGTGGGACGTGTGGTT |
FtUPL7-qR | AAGCGATCCTCTGGTGATAG |
图3 FtDELLA理化性质分析 A,氨基酸含量分布;B,FtDELLA蛋白磷酸化修饰;C,FtDELLA蛋白氨基酸亲、疏水预测;D,FtDELLA蛋白信号肽预测图。
Fig.3 Analysis of physical and chemical properties of FtDELLA A, Amino acid content distribution; B, FtDELLA phosphorylation modifications; C, FtDELLA amino acid pro- and hydrophobic predictions; D, FtDELLA signal peptide prediction map.
图4 FtDELLA结构预测 A,保守结构域;B,二级结构预测,其中蓝色为α螺旋,红色为β折叠,绿色为β转角,紫色为无规卷曲;C-a,FtDELLA蛋白N端蛋白三级结构示意图;C-b,FtDELLA蛋白C端蛋白三级结构示意图。
Fig.4 FtDELLA structure prediction A, Conserved structural domain; B, Prediction of secondary structure; the blue represents α-helix; the red represents β-sheet; the green represents β-turn; the purple represents random coil. C-a, Schematic representation of the N-terminal tertiary structure of the FtDELLA protein; C-b, Schematic representation of the C-terminal tertiary structure of the FtDELLA protein.
图8 FtDELLA在苦荞不同组织部位的表达 种子1,开花后3 d的种子;种子2,开花后10 d的种子;种子3,开花后13 d的种子。
Fig.8 FtDELLA expression in different tissue parts of buckwheat Seed 1, Seeds at 3 days after flowering; Seed 2, Seeds at 10 days after flowering; Seed 3, Seeds at 13 days after flowering.
[1] | LI W J, ZHANG J X, SUN H Y, et al. FveRGA1, encoding a DELLA protein, negatively regulates runner production in Fragaria vesca[J]. Planta, 2018, 247(4): 941-951. |
[2] | GUARDIOLA J L. Plant hormones. physiology, biochemistry and molecular biology[J]. Scientia Horticulturae, 1996, 66(3/4): 267-270. |
[3] | 赵春丽, 王晓, 陈家兰, 等. 植物DELLA蛋白家族研究进展[J]. 应用与环境生物学报, 2020, 26(5): 1299-1308. |
ZHAO C L, WANG X, CHEN J L, et al. Progress in research on plant DELLA family proteins[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(5): 1299-1308. (in Chinese) | |
[4] | 吴建明, 黄杏, 丘立杭, 等. DELLA蛋白在植物中的研究进展[J]. 农业生物技术学报, 2016, 24(8): 1207-1215. |
WU J M, HUANG X, QIU L H, et al. Progress on DELLA protein in plant[J]. Journal of Agricultural Biotechnology, 2016, 24(8): 1207-1215. (in Chinese) | |
[5] | LIU C, WANG J L, HUANG T D, et al. A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus[J]. Theoretical and Applied Genetics, 2010, 121(2): 249-258. |
[6] | ACHARD P, VRIEZEN W H, VAN DER STRAETEN D, et al. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function[J]. The Plant Cell, 2003, 15(12): 2816-2825. |
[7] | SATO T, MIYANOIRI Y, TAKEDA M, et al. Expression and purification of a GRAS domain of SLR1, the rice DELLA protein[J]. Protein Expression and Purification, 2014, 95: 248-258. |
[8] | 黄先忠, 蒋才富, 廖立力, 等. 赤霉素作用机理的分子基础与调控模式研究进展[J]. 植物学通报, 2006, 23(5): 499-510. |
HUANG X Z, JIANG C F, LIAO L L, et al. Progress on molecular foundation of GA biosynthesis pathway and signaling[J]. Chinese Bulletin of Botany, 2006, 23(5): 499-510. (in Chinese) | |
[9] | SUN T P. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants[J]. Current Biology, 2011, 21(9): R338-R345. |
[10] | WANG Y J, DENG D X. Molecular basis and evolutionary pattern of GA-GID1-DELLA regulatory module[J]. Molecular Genetics and Genomics, 2014, 289(1): 1-9. |
[11] | MAGOME H, YAMAGUCHI S, HANADA A, et al. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis[J]. The Plant Journal, 2008, 56(4): 613-626. |
[12] | WU J J, YAN G B, DUAN Z Q, et al. Roles of the Brassica napus DELLA protein BnaA6.RGA, in modulating drought tolerance by interacting with the ABA signaling component BnaA10.ABF2[J]. Frontiers in Plant Science, 2020, 11: 577. |
[13] | CHENG X F, HASHEM A, FATHI ABD_ALLAH E, et al. Identification of PtGai (a DELLA protein) in trifoliate orange and expression patterns in response to drought stress[J]. BIOCELL, 2021, 45(6): 1687-1694. |
[14] | LANTZOUNI O, ALKOFER A, FALTER-BRAUN P, et al. GROWTH-REGULATING FACTORS interact with DELLAs and regulate growth in cold stress[J]. The Plant Cell, 2020, 32(4): 1018-1034. |
[15] | ACHARD P, BAGHOUR M, CHAPPLE A, et al. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(15): 6484-6489. |
[16] | KWAK J M, MORI I C, PEI Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. The EMBO Journal, 2003, 22(11): 2623-2633. |
[17] | 姚佳, 靳秔, 贾健斌. 苦荞黄酮及其生理功能的研究进展[J]. 食品科技, 2014, 39(10): 193-197. |
YAO J, JIN J, JIA J B. Research progress of Tartary buckwheat flavonoid and its physiological functions[J]. Food Science and Technology, 2014, 39(10): 193-197. (in Chinese) | |
[18] | 陈旭玲, 李显团, 王横, 等. 60Co-γ辐射诱变苦荞品系中淀粉与可溶性糖突变种质的鉴定[J]. 贵州师范大学学报(自然科学版), 2024, 42(3): 1-8. |
CHENG X L, LI X T, WANG H, et al. Identification of starch and soluble sugar mutants in Fagopyrum tataricum Gaertn. mutagenesis library by 60Co-γ radiation[J]. Journal of Guizhou Normal University: Natural Sciences, 2024, 42(3): 1-8. (in Chinese with English abstract) | |
[19] | 吕勇, 许学微, 陈庆富, 等. 苦荞种子活力测定方法与其田间成苗率的相关性[J]. 贵州师范大学学报(自然科学版), 2024, 42(2): 112-117. |
LYU Y, XU X W, CHEN Q F, et al. Relativity analysis between the percentage of seedlings in the field and the methods of seed testing of Tartary buckwheat[J]. Journal of Guizhou Normal University(Natural Sciences), 2024, 42(2): 112-117. (in Chinese) | |
[20] | 汪燕, 梁成刚, 孙艳红, 等. 不同苦荞品种的产量与品质及其对低氮的响应[J]. 贵州师范大学学报(自然科学版), 2017, 35(6): 66-73. |
WANG Y, LIANG C G, SUN Y H, et al. The yield and quality of Tartary buckwheat varieties and the response to low nitrogen[J]. Journal of Guizhou Normal University(Natural Sciences), 2017, 35(6): 66-73. (in Chinese) | |
[21] | 周冉冉, 李可心, 陈茂彬, 等. 苦荞营养、功能和香气成分的研究进展[J]. 中国酿造, 2018, 37(12): 12-15. |
ZHOU R R, LI K X, CHEN M B, et al. Research progress of nutritional, functional and aroma components of Tartary buckwheat[J]. China Brewing, 2018, 37(12): 12-15. (in Chinese) | |
[22] | 何伟俊, 曾荣, 白永亮, 等. 苦荞麦的营养价值及开发利用研究进展[J]. 农产品加工(上半月), 2019(12): 69-75. |
HE W J, ZENG R, BAI Y L, et al. The nutritive value and progress in development and utilization of Tartary buckwheat[J]. Academic Periodical of Farm Products Processing, 2019(12): 69-75. (in Chinese) | |
[23] | 石桃雄, 唐彬, 任蓉蓉, 等. 苦荞AGPase编码基因FtAGPL和FtAGPS全基因组鉴定和表达分析[J]. 贵州师范大学学报(自然科学版), 2021, 39(4): 52-57. |
SHI T X, TANG B, REN R R, et al. Genome-wide identification and gene expression analyses of AGPase encoding genes FtAGPL and FtAGPS in Tartary buckwheat (Fagopyrum tataricum)[J]. Journal of Guizhou Normal University(Natural Sciences), 2021, 39(4): 52-57. (in Chinese) | |
[24] | WILLIGE B C, GHOSH S, NILL C, et al. The della domain of GA insensitive mediates the interaction with the GA insensitive dwarf1a gibberellin receptor of Arabidopsis[J]. The Plant Cell, 2007, 19(4): 1209-1220. |
[25] | 宫磊, 张文娜, 李天忠. 梨编码DELLA蛋白的GAI基因克隆与序列分析[C]// 梨科研与生产进展(五). 中国园艺学会梨分会, 2011: 53-56. |
[26] | WEN C K, CHANG C R. Arabidopsis RGL1 encodes a negative regulator of gibberellin responses[J]. The Plant Cell, 2002, 14(1): 87-100. |
[27] | QIN Q Q, WANG W, GUO X L, et al. Arabidopsis DELLA protein degradation is controlled by a type-one protein phosphatase, TOPP4[J]. PLoS Genetics, 2014, 10(7): e1004464. |
[28] | LIU S A, XUAN L, XU L, et al. Molecular cloning, expression analysis and subcellular localization of four DELLA genes from hybrid poplar[J]. SpringerPlus, 2016, 5(1): 1129. |
[29] | EL-SHARKAWY I, SHERIF S, ABDULLA M, et al. Plum fruit development occurs via gibberellin-sensitive and-insensitive DELLA repressors[J]. PLoS One, 2017, 12(1): e0169440. |
[30] | 廖文彬, 彭明. 木薯赤霉素途径DELLA蛋白基因克隆及其对干旱胁迫的响应[J]. 热带生物学报, 2012, 3(4): 298-304. |
LIAO W B, PENG M. Gene cloning of DELLA protein from cassava and its expression patterns under drought stress[J]. Journal of Tropical Biology, 2012, 3(4): 298-304. (in Chinese) | |
[31] | WANG Z J, LIU L, CHENG C H, et al. GAI functions in the plant response to dehydration stress in Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2020, 21(3): 819. |
[32] | KOCHEVA K, NENOVA V, KARCEVA T, et al. Changes in water status, membrane stability and antioxidant capacity of wheat seedlings carrying different Rht-B1 dwarfing alleles under drought stress[J]. Journal of Agronomy and Crop Science, 2014, 200(2): 83-91. |
[1] | 朱贵爽, 李艳肖, 张安宁, 孙浩楠, 徐兴源, 李志刚, 向殿军. 蓖麻GeBP转录因子的全基因组鉴定与GeBP2基因的克隆、表达分析[J]. 浙江农业学报, 2024, 36(8): 1731-1740. |
[2] | 唐红, 关文志, 许晓军, 牛宝龙, 楼宝, 沈小明, 顾志敏. 三角鲂foxl2基因克隆和时空表达特征及EE2对其表达的影响[J]. 浙江农业学报, 2024, 36(8): 1789-1799. |
[3] | 袁晓, 蒋园园, 朱云娜, 曲姗姗, 王玉昆, 原远, 王斌. JAZ家族基因在采后黄瓜低温贮藏条件下的表达分析[J]. 浙江农业学报, 2024, 36(8): 1820-1831. |
[4] | 蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843. |
[5] | 薛贤滨, 贾琼, 陈峥峰, 黎瑞源, 陈庆富, 石桃雄. 基于主成分分析的苦荞麦重组自交系农艺性状综合评价[J]. 浙江农业学报, 2024, 36(4): 748-759. |
[6] | 寿伟松, 王铎, 沈佳, 许昕阳, 张跃建, 何艳军. 西瓜蔗糖转运蛋白SUT家族的鉴定及其在果实发育和逆境响应中的表达分析[J]. 浙江农业学报, 2024, 36(1): 94-102. |
[7] | 宋传生, 康晓飞, 樊庆忠, 王俊刚, 石雪, 张子汝, 谭青青, 曾小娇, 刘芳, 李英赛, 侯常跃. 枣疯病植原体胸苷激酶基因的克隆、序列分析与原核表达[J]. 浙江农业学报, 2023, 35(8): 1763-1772. |
[8] | 王迪, 杨汉梅, 李阳倩, 贾梦婷, 邹亮, 杨帆. 苦荞麦“品、质、效、用”的多维评价及其活性成分高值化利用的研究进展[J]. 浙江农业学报, 2023, 35(8): 1960-1974. |
[9] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[10] | 张新业, 李文静, 朱姝, 孙艳香, 王聪艳, 闫训友, 周志国. 三种伞形科蔬菜作物棕榈酰基转移酶基因家族的鉴定与分析[J]. 浙江农业学报, 2023, 35(6): 1315-1327. |
[11] | 梁妃爽, 梁华芳, 黄佳宇, 王潘妹, 温崇庆. RNA干扰PhCatC1/2基因对波纹龙虾相关免疫基因表达的影响[J]. 浙江农业学报, 2023, 35(5): 1037-1047. |
[12] | 姚彦林, 马骊, 刘丽君, 蒲媛媛, 李学才, 王旺田, 方彦, 孙万仓, 武军艳. 白菜型油菜开花调控基因BrFT的生物信息学特性和表达分析[J]. 浙江农业学报, 2023, 35(5): 992-1000. |
[13] | 燕存尧, 贾凯, 闫会转, 高杰. 芜菁BrrLOX7基因克隆、表达及生物信息学分析[J]. 浙江农业学报, 2023, 35(4): 831-840. |
[14] | 邓丕超. 植物生长调节剂对狗牙根生长特性及坪用质量的影响[J]. 浙江农业学报, 2023, 35(4): 841-852. |
[15] | 刘晓芬, 凌晓祺, 向理理, 余璐, 沈宏, 李方. 温度和赤霉素对春兰开花的调控[J]. 浙江农业学报, 2023, 35(2): 355-363. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 363
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 186
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||