浙江农业学报 ›› 2024, Vol. 36 ›› Issue (8): 1731-1740.DOI: 10.3969/j.issn.1004-1524.20230833
朱贵爽(), 李艳肖, 张安宁, 孙浩楠, 徐兴源, 李志刚, 向殿军(
)
收稿日期:
2023-07-05
出版日期:
2024-08-25
发布日期:
2024-09-06
作者简介:
*向殿军,E-mail: Xiangdianjun00@126.com通讯作者:
向殿军
基金资助:
ZHU Guishuang(), LI Yanxiao, ZHANG Anning, SUN Haonan, XU Xingyuan, LI Zhigang, XIANG Dianjun(
)
Received:
2023-07-05
Online:
2024-08-25
Published:
2024-09-06
Contact:
XIANG Dianjun
摘要:
GeBP基因家族编码的转录因子可通过调节表皮毛的生长与分化影响植物的发育,增强植株在不利环境中的存活能力。为探究GeBP基因在蓖麻基因组中的分布与特征基因RcGeBP2的功能,本研究鉴定了蓖麻的全部GeBP基因,采取RT-PCR技术克隆RcGeBP2基因,分析其分子特征包括生物信息学、亚细胞定位和表达模式。试验表明,蓖麻的基因组中共有4个RcGeBP基因不均匀分布于3条染色体上且RcGeBP基因编码的蛋白质均为亲水性蛋白,高级结构以无规则卷曲为主。GeBP的进化树构建显示,蓖麻GeBP蛋白与番茄GeBP蛋白亲缘关系最近,蓖麻的GeBP基因分别与番茄和拟南芥的GeBP基因发生了3次和2次基因组间的复制。Ka/Ks结果显示,GeBP基因在物种间的进化是钝化的。启动子顺式作用元件预测结果显示,RcGeBP启动子区域含多个逆境响应和激素诱导类元件。RcGeBP基因的FPKM表达值显示,这些基因拥有组织表达特性且表达受到干旱和盐胁迫的激活。RcGeBP2蛋白质亚细胞定位结果显示,其定位在细胞核。综上,该研究对探明蓖麻RcGeBP基因家族参与盐和干旱胁迫的交叉调控具有一定的参考价值。
中图分类号:
朱贵爽, 李艳肖, 张安宁, 孙浩楠, 徐兴源, 李志刚, 向殿军. 蓖麻GeBP转录因子的全基因组鉴定与GeBP2基因的克隆、表达分析[J]. 浙江农业学报, 2024, 36(8): 1731-1740.
ZHU Guishuang, LI Yanxiao, ZHANG Anning, SUN Haonan, XU Xingyuan, LI Zhigang, XIANG Dianjun. Identification of RcGeBP transcription factor and cloning and expression analysis of RcGeBP2 gene in castor[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1731-1740.
引物名称 Primer name | 引物序列 Primer sequences(5'→3') | 用途 Usage |
---|---|---|
RcGeBP2-F1 | ATGGACTCCAATCTCAACCCACTCC | 基因克隆Gene cloning |
RcGeBP2-R1 | TCATAACCTAACAGAACCCTCAAGC | |
RcGeBP2-F2 | CTTCACTGTTGATACATATGGACTCCAATCTCAACCC | 亚细胞定位Subcellular localization |
RcGeBP2-R2 | ATCCGGTACCCCCGGGTAACCTAACAGAACCCTCAAG |
表1 试验所用引物
Table 1 Primers used in the test
引物名称 Primer name | 引物序列 Primer sequences(5'→3') | 用途 Usage |
---|---|---|
RcGeBP2-F1 | ATGGACTCCAATCTCAACCCACTCC | 基因克隆Gene cloning |
RcGeBP2-R1 | TCATAACCTAACAGAACCCTCAAGC | |
RcGeBP2-F2 | CTTCACTGTTGATACATATGGACTCCAATCTCAACCC | 亚细胞定位Subcellular localization |
RcGeBP2-R2 | ATCCGGTACCCCCGGGTAACCTAACAGAACCCTCAAG |
基因登录号 GenBank No. | 基因 Gene | 氨基酸 数目 Number of amino acid | 分子量 Molecular weight/u | 等电点 pI | 总平均 疏水性 Grand average of hydropathicity | 不稳定 系数 Instability index | 脂肪系数 Aliphatic index | 带正电氨基酸 Positively charged amino acids (Arg+Lys) | 带负电氨基酸 Negatively charged amino acids (Asp+Glu) | 亚细胞位置 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|---|
Rc05T009423 | RcGeBP1 | 391 | 43637.68 | 5.32 | -1.155 | 46.84 | 57.16 | 71 | 82 | 细胞核 Nucleus |
Rc05T012306 | RcGeBP2 | 286 | 32508.92 | 9.54 | -0.706 | 58.59 | 77.31 | 42 | 33 | 细胞核 Nucleus |
Rc09T020714 | RcGeBP3 | 383 | 42740.10 | 5.00 | -1.140 | 52.29 | 64.13 | 60 | 79 | 细胞核 Nucleus |
Rc10T024212 | RcGeBP4 | 415 | 46173.80 | 4.62 | -0.770 | 62.28 | 74.75 | 46 | 76 | 细胞核 Nucleus |
表2 RcGeBP蛋白质的基本理化性质
Table 2 Basic physicochemical properties of RcGeBP protein
基因登录号 GenBank No. | 基因 Gene | 氨基酸 数目 Number of amino acid | 分子量 Molecular weight/u | 等电点 pI | 总平均 疏水性 Grand average of hydropathicity | 不稳定 系数 Instability index | 脂肪系数 Aliphatic index | 带正电氨基酸 Positively charged amino acids (Arg+Lys) | 带负电氨基酸 Negatively charged amino acids (Asp+Glu) | 亚细胞位置 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|---|
Rc05T009423 | RcGeBP1 | 391 | 43637.68 | 5.32 | -1.155 | 46.84 | 57.16 | 71 | 82 | 细胞核 Nucleus |
Rc05T012306 | RcGeBP2 | 286 | 32508.92 | 9.54 | -0.706 | 58.59 | 77.31 | 42 | 33 | 细胞核 Nucleus |
Rc09T020714 | RcGeBP3 | 383 | 42740.10 | 5.00 | -1.140 | 52.29 | 64.13 | 60 | 79 | 细胞核 Nucleus |
Rc10T024212 | RcGeBP4 | 415 | 46173.80 | 4.62 | -0.770 | 62.28 | 74.75 | 46 | 76 | 细胞核 Nucleus |
蛋白质名称 Protein name | α螺旋 α-Helix | β折叠 β-Sheet | 无规卷曲 Random coil | 延伸链 Extended strand |
---|---|---|---|---|
RcGeBP1 | 40.41 | 3.07 | 53.96 | 2.56 |
RcGeBP2 | 39.16 | 4.20 | 48.25 | 8.39 |
RcGeBP3 | 40.99 | 2.35 | 51.17 | 5.48 |
RcGeBP4 | 37.59 | 2.65 | 46.99 | 12.77 |
表3 RcGeBP蛋白质的二级结构预测
Table 3 Secondary structure prediction of RcGeBP protein %
蛋白质名称 Protein name | α螺旋 α-Helix | β折叠 β-Sheet | 无规卷曲 Random coil | 延伸链 Extended strand |
---|---|---|---|---|
RcGeBP1 | 40.41 | 3.07 | 53.96 | 2.56 |
RcGeBP2 | 39.16 | 4.20 | 48.25 | 8.39 |
RcGeBP3 | 40.99 | 2.35 | 51.17 | 5.48 |
RcGeBP4 | 37.59 | 2.65 | 46.99 | 12.77 |
图3 蓖麻RcGeBP基因的结构与推导氨基酸的保守基序和结构域 A,氨基酸保守基序;B,氨基酸结构域;C,蓖麻RcGeBP基因的结构。
Fig.3 The structure and deduced amino acid conserved motifand domain of RcGeBP gene in castor A, Deduced amino acid conserved motif of RcGeBP gene in castor; B, Domain of RcGeBP gene in castor; C,The structure of RcGeBP gene in castor.
共线基因名称 Collinear gene name | 非同义 替换率 Ka | 同义替 换率 Ks | 非同义替换率/ 同义替换率 Ka/Ks |
---|---|---|---|
RcGeBP1_Solyc05g051330.1 | 0.651 | - | - |
RcGeBP2_Solyc07g052830.2 | 0.390 | 2.308 | 0.169 |
RcGeBP3_Solyc07g052900.1 | 0.530 | 2.510 | 0.211 |
RcGeBP1_AEE85025.1 | 0.449 | - | - |
RcGeBP1_AEE82001.1 | 0.336 | 1.702 | 0.198 |
表4 共线基因对的选择压力分析
Table 4 Selection pressure analysis of collinear gene pairs
共线基因名称 Collinear gene name | 非同义 替换率 Ka | 同义替 换率 Ks | 非同义替换率/ 同义替换率 Ka/Ks |
---|---|---|---|
RcGeBP1_Solyc05g051330.1 | 0.651 | - | - |
RcGeBP2_Solyc07g052830.2 | 0.390 | 2.308 | 0.169 |
RcGeBP3_Solyc07g052900.1 | 0.530 | 2.510 | 0.211 |
RcGeBP1_AEE85025.1 | 0.449 | - | - |
RcGeBP1_AEE82001.1 | 0.336 | 1.702 | 0.198 |
图7 蓖麻RcGeBP基因的表达谱分析 A、B分别代表RcGeBP基因的组织表达和胁迫表达;S和P分别表示盐胁迫和干旱胁迫,数字表示胁迫时间。
Fig.7 Expression profile analysis of RcGeBP gene in castor A and B represent the tissue expression and stress expression of RcGeBP gene, respectively. S and D represent salt stress and drought stress, respectively, and the number represents the stress time.
图9 RcGeBP蛋白质的亚细胞定位分析 GFP,绿色荧光;CHL,叶绿体自发荧光;DIC,明场;Merge,叠加场。
Fig.9 Subcellular localization analysis of RcGeBP protein GFP, Green fluorescence; CHL,Chloroplast autofluorescence; DIC, Bright field; Merge, Superposition field.
[1] | TAKAHASHI F, SHINOZAKI K. Long-distance signaling in plant stress response[J]. Current Opinion in Plant Biology, 2019, 47: 106-111. |
[2] | ALBERTOS P, DÜNDAR G, SCHENK P, et al. Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants[J]. The EMBO Journal, 2022, 41(3): e108664. |
[3] | WANG X P, NIU Y L, ZHENG Y. Multiple functions of MYB transcription factors in abiotic stress responses[J]. International Journal of Molecular Sciences, 2021, 22(11): 6125. |
[4] | BI C X, YU Y H, DONG C H, et al. The bZIP transcription factor TabZIP15 improves salt stress tolerance in wheat[J]. Plant Biotechnology Journal, 2021, 19(2): 209-211. |
[5] | ALI N, HADI F. CBF/DREB transcription factor genes play role in cadmium tolerance and phytoaccumulation in Ricinus communis under molybdenum treatments[J]. Chemosphere, 2018, 208: 425-432. |
[6] | BERHIN A, NAWRATH C, HACHEZ C. Subtle interplay between trichome development and cuticle formation in plants[J]. The New Phytologist, 2022, 233(5): 2036-2046. |
[7] | BALKUNDE R, PESCH M, HÜLSKAMP M. Trichome patterning in Arabidopsis thaliana from genetic to molecular models[J]. Current Topics in Developmental Biology, 2010, 91: 299-321. |
[8] | GAN Y B, LIU C, YU H, et al. Integration of cytokinin and gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2 in the regulation of epidermal cell fate[J]. Development, 2007, 134(11): 2073-2081. |
[9] | CURABA J, HERZOG M, VACHON G. GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA-binding activity and is regulated by KNAT1[J]. The Plant Journal, 2003, 33(2): 305-317. |
[10] | SZYMANSKI D B, LLOYD A M, MARKS M D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis[J]. Trends in Plant Science, 2000, 5(5): 214-219. |
[11] | HÜLSKAMP M, SCHNITTGER A, FOLKERS U. Pattern formation and cell differentiation: trichomes in Arabidopsis as a genetic model system[J]. International Review of Cytology, 1999, 186: 147-178. |
[12] | KHARE D, MITSUDA N, LEE S, et al. Root avoidance of toxic metals requires the GeBP-LIKE 4 transcription factor in Arabidopsis thaliana[J]. The New Phytologist, 2017, 213(3): 1257-1273. |
[13] | CHAN A P, CRABTREE J, ZHAO Q, et al. Draft genome sequence of the oilseed species Ricinus communis[J]. Nature Biotechnology, 2010, 28(9): 951-956. |
[14] | BROWN A P, KROON J T M, SWARBRECK D, et al. Tissue-specific whole transcriptome sequencing in Castor, directed at understanding triacylglycerol lipid biosynthetic pathways[J]. PLoS One, 2012, 7(2): e30100. |
[15] | 李艳肖, 张春兰, 徐兴源, 等. 基于转录组学的蓖麻耐盐基因的挖掘[J]. 植物遗传资源学报, 2023, 24(6): 1778-1794. |
LI Y X, ZHANG C L, XU X Y, et al. Transcriptomics-assisted mining of salt-tolerant genes in Ricinus communis[J]. Journal of Plant Genetic Resources, 2023, 24(6): 1778-1794. (in Chinese with English abstract) | |
[16] | LIU S S, LIU Y M, LIU C D, et al. Genome-wide characterization and expression analysis of GeBP family genes in soybean[J]. Plants, 2022, 11(14): 1848. |
[17] | 单雪萌, 杨克彬, 史晶晶, 等. 毛竹GeBP转录因子家族的全基因组鉴定和表达分析[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 41-48. |
SHAN X M, YANG K B, SHI J J, et al. Genome-wide identification and expression analysis of GeBP transcription factor gene family in moso bamboo[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2020, 44(3): 41-48. (in Chinese with English abstract) | |
[18] | 陈凯, 刘金秋, 宋海慧, 等. 番茄GeBP转录因子家族的鉴定及其进化和表达分析[J]. 分子植物育种, 2017, 15(9): 3438-3445. |
CHEN K, LIU J Q, SONG H H, et al. Identification, evolution and expression analysis of GeBP transcription factors family in tomato[J]. Molecular Plant Breeding, 2017, 15(9): 3438-3445. (in Chinese with English abstract) | |
[19] | 石蕾. 水稻GEBP家族基因的功能初探[D]. 武汉: 华中农业大学, 2013. |
SHI L. Preliminry functional analysis of the GeBP family in rice[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese with English abstract) | |
[20] | BICKMORE W A, SUTHERLAND H G E. Addressing protein localization within the nucleus[J]. The EMBO Journal, 2002, 21(6): 1248-1254. |
[21] | CHEN Y, SHEN J, ZHANG L, et al. Nuclear translocation of OsMFT1 that is impeded by OsFTIP1 promotes drought tolerance in rice[J]. Molecular Plant, 2021, 14(8): 1297-1311. |
[22] | CHEVALIER F, PERAZZA D, LAPORTE F, et al. GeBP and GeBP-like proteins are noncanonical leucine-zipper transcription factors that regulate cytokinin response in Arabidopsis[J]. Plant Physiology, 2008, 146(3): 1142-1154. |
[23] | HUANG J S, ZHANG Q N, HE Y R, et al. Genome-wide identification, expansion mechanism and expression profiling analysis of GLABROUS1 enhancer-binding protein(GeBP) gene family in Gramineae crops[J]. International Journal of Molecular Sciences, 2021, 22(16): 8758. |
[24] | LIU R X, LI H L, QIAO Z W, et al. Genome-wide analysis of MdGeBP family and functional identification of MdGeBP3 in Malus domestica[J]. Environmental and Experimental Botany, 2023, 208: 105262. |
[1] | 孙培媛, 冉彬, 王佳蕊, 李洪有. 苦荞FtDELLA基因的克隆与表达分析[J]. 浙江农业学报, 2024, 36(8): 1709-1718. |
[2] | 唐红, 关文志, 许晓军, 牛宝龙, 楼宝, 沈小明, 顾志敏. 三角鲂foxl2基因克隆和时空表达特征及EE2对其表达的影响[J]. 浙江农业学报, 2024, 36(8): 1789-1799. |
[3] | 袁晓, 蒋园园, 朱云娜, 曲姗姗, 王玉昆, 原远, 王斌. JAZ家族基因在采后黄瓜低温贮藏条件下的表达分析[J]. 浙江农业学报, 2024, 36(8): 1820-1831. |
[4] | 蒋文骏, 舒红锁, 陈正满, 任典挺, 杨党, 田荣江, 杜照奎. 秋茄KoWRKY43基因克隆、表达与生物信息学分析[J]. 浙江农业学报, 2024, 36(8): 1832-1843. |
[5] | 吴国江, 周伟, 李艳肖, 侯杰, 杨志强, 周亚星. 高粱ZF-HD基因家族鉴定与盐碱胁迫下的表达分析[J]. 浙江农业学报, 2024, 36(6): 1217-1231. |
[6] | 宛燕, 周晓春, 房海灵, 林沂, 亓希武, 于盱, 陈泽群, 梁呈元. 金银花光形态建成因子LjCOP1基因克隆及表达模式分析[J]. 浙江农业学报, 2024, 36(6): 1290-1299. |
[7] | 何昌熙, 郑建波, 马建波, 贾永义, 刘士力, 蒋文枰, 迟美丽, 程顺, 李飞. 翘嘴鲌Runx2b基因的克隆与表达特征分析[J]. 浙江农业学报, 2024, 36(5): 1024-1031. |
[8] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
[9] | 李天恩, 周思含, 孙洪超, 付媛, 石团员, 闫文朝. 鸡柔嫩艾美耳球虫2种假定致密颗粒蛋白基因的克隆与表达[J]. 浙江农业学报, 2024, 36(3): 503-514. |
[10] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
[11] | 彭佳诚, 吴越, 徐洁皓, 夏美文, 齐天鹏, 徐海圣. 日本沼虾桩蛋白基因的克隆与镉胁迫对其表达的影响[J]. 浙江农业学报, 2024, 36(2): 247-253. |
[12] | 刘筱琳, 孙婷婷, 杨捷, 何恒斌. 天香百合、药百合黄酮醇合成酶FLS基因克隆和表达分析[J]. 浙江农业学报, 2024, 36(2): 344-357. |
[13] | 寿伟松, 王铎, 沈佳, 许昕阳, 张跃建, 何艳军. 西瓜蔗糖转运蛋白SUT家族的鉴定及其在果实发育和逆境响应中的表达分析[J]. 浙江农业学报, 2024, 36(1): 94-102. |
[14] | 宋传生, 康晓飞, 樊庆忠, 王俊刚, 石雪, 张子汝, 谭青青, 曾小娇, 刘芳, 李英赛, 侯常跃. 枣疯病植原体胸苷激酶基因的克隆、序列分析与原核表达[J]. 浙江农业学报, 2023, 35(8): 1763-1772. |
[15] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 377
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||