浙江农业学报 ›› 2025, Vol. 37 ›› Issue (6): 1212-1220.DOI: 10.3969/j.issn.1004-1524.20240541
收稿日期:
2024-06-24
出版日期:
2025-06-25
发布日期:
2025-07-08
作者简介:
张悦宇(2001—),女,河北石家庄人,硕士研究生,研究方向为生物工程。E-mail:zhangyueyu2024@163.com
通讯作者:
*李秋玲,E-mail:liqiuling2000@126.com
基金资助:
ZHANG Yueyu(), HUANG Meiqi, ZHANG Lin, QI Ying, LI Qiuling*(
)
Received:
2024-06-24
Online:
2025-06-25
Published:
2025-07-08
摘要: 为了探究热应激条件下bta-miR-146b对奶牛乳蛋白合成的影响,在奶牛乳腺上皮细胞中分别转染bta-miR-146b模拟物、bta-miR-146b抑制物、bta-miR-146b模拟物阴性对照物、bta-miR-146b抑制物阴性对照物,然后进行热应激(40 ℃)处理,通过实时荧光定量PCR(qRT-PCR)技术检测各组细胞中的乳蛋白相关基因(CSN2、CSN3)和乳蛋白合成信号通路相关基因(JAK2、STAT5、mTOR、MAPK)的相对表达量,分析过表达bta-miR-146b和抑制表达bta-miR-146b在热应激与非热应激条件下对乳蛋白和乳蛋白合成信号通路的影响。结果显示:转染bta-miR-146b模拟物后乳腺上皮细胞中bta-miR-146b的表达量提高,转染bta-miR-146b抑制物后乳腺上皮细胞中bta-miR-146b的表达量降低;热应激会抑制空白对照组、bta-miR-146b模拟物组和bta-miR-146b抑制物组奶牛乳腺上皮细胞中CSN2、CSN3、JAK2、STAT5、mTOR、MAPK基因的表达;非热应激条件下,过表达bta-miR-146b会使CSN2、CSN3、JAK2、STAT5、mTOR、MAPK基因表达量显著降低,抑制表达bta-miR-146b会使CSN3、JAK2、STAT5、mTOR、MAPK基因表达量显著升高;热应激条件下,过表达bta-miR-146b会使CSN2、CSN3、JAK2、STAT5、mTOR、MAPK基因表达量显著降低,抑制表达bta-miR-146b会使这些基因表达量显著升高。综上所述,热应激处理和过表达bta-miR-146b均会显著抑制乳蛋白和乳蛋白合成信号通路的相关基因的表达,抑制表达bta-miR-146b会促进乳蛋白和乳蛋白合成信号通路相关基因的表达。
中图分类号:
张悦宇, 黄美琦, 张琳, 齐颖, 李秋玲. bta-miR-146b对热应激奶牛乳腺上皮细胞乳蛋白合成信号通路的影响[J]. 浙江农业学报, 2025, 37(6): 1212-1220.
ZHANG Yueyu, HUANG Meiqi, ZHANG Lin, QI Ying, LI Qiuling. Effects of bta-miR-146b on the signaling pathway of milk protein synthesis in heat-stressed bovine mammary epithelial cells[J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1212-1220.
名称 Name | 序列 Sequence | |
---|---|---|
正义链Sense(5'→3') | 反义链Antisense(5'→3') | |
bta-miR-146b模拟物 | UGAGAACUGAAUUCCAUAGGCUGU | ACAGCCUAUGGAAUUCAGUUCUCA |
bta-miR-146b mimics | ||
bta-miR-146b 抑制物 | ACAGCCUAUGGAAUUCAGUUCUCA | |
bta-miR-146b inhibitor | ||
bta-miR-146b模拟物阴性对照物 | UUGUACUACACAAAAGUACUG | GUACUUUUGUGUAGUACAAUU |
bta-miR-146b mimics NC | ||
bta-miR-146b抑制物阴性对照物 | CAGUACUUUUGUGUAGUACAA | |
bta-miR-146b inhibitor NC |
表1 转染物序列
Table 1 The sequences of the transfection
名称 Name | 序列 Sequence | |
---|---|---|
正义链Sense(5'→3') | 反义链Antisense(5'→3') | |
bta-miR-146b模拟物 | UGAGAACUGAAUUCCAUAGGCUGU | ACAGCCUAUGGAAUUCAGUUCUCA |
bta-miR-146b mimics | ||
bta-miR-146b 抑制物 | ACAGCCUAUGGAAUUCAGUUCUCA | |
bta-miR-146b inhibitor | ||
bta-miR-146b模拟物阴性对照物 | UUGUACUACACAAAAGUACUG | GUACUUUUGUGUAGUACAAUU |
bta-miR-146b mimics NC | ||
bta-miR-146b抑制物阴性对照物 | CAGUACUUUUGUGUAGUACAA | |
bta-miR-146b inhibitor NC |
处理 Treatment | 分组 Group | 转染物 Transfections |
---|---|---|
非热应激组NHS group | 非转染组Non-transfected group | 无Blank |
转染组Transfected group | bta-miR-146b模拟物bta-miR-146b mimics | |
bta-miR-146b 模拟物阴性对照物bta-miR-146b mimics NC | ||
bta-miR-146b抑制物bta-miR-146b inhibitor | ||
bta-miR-146b 抑制物阴性对照物bta-miR-146b inhibitor NC | ||
热应激组HS group | 非转染组Non-transfected group | 无Blank |
转染组Transfected group | bta-miR-146b模拟物bta-miR-146b mimics | |
bta-miR-146b 模拟物阴性对照物bta-miR-146b mimics NC | ||
bta-miR-146b抑制物btabta-miR-146b inhibitor | ||
bta-miR-146b 抑制物阴性对照物bta-miR-146b inhibitor NC |
表2 奶牛乳腺上皮细胞处理与分组情况
Table 2 The treatments and groups of bovine mammary epithelial cells
处理 Treatment | 分组 Group | 转染物 Transfections |
---|---|---|
非热应激组NHS group | 非转染组Non-transfected group | 无Blank |
转染组Transfected group | bta-miR-146b模拟物bta-miR-146b mimics | |
bta-miR-146b 模拟物阴性对照物bta-miR-146b mimics NC | ||
bta-miR-146b抑制物bta-miR-146b inhibitor | ||
bta-miR-146b 抑制物阴性对照物bta-miR-146b inhibitor NC | ||
热应激组HS group | 非转染组Non-transfected group | 无Blank |
转染组Transfected group | bta-miR-146b模拟物bta-miR-146b mimics | |
bta-miR-146b 模拟物阴性对照物bta-miR-146b mimics NC | ||
bta-miR-146b抑制物btabta-miR-146b inhibitor | ||
bta-miR-146b 抑制物阴性对照物bta-miR-146b inhibitor NC |
基因 Gene | 正向引物序列 Forward primer sequence (5'→3') | 反向引物序列 Reverse primer sequence (5'→3') |
---|---|---|
β-actin | CTGTTAGCTGCGTTACACCCTT | TGCTGTCACCTTCACCGTTC |
bta-miR-146b | GGGTGAGAACTGAATTCCATA | GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACACAGCC |
U6 | GCTTCGGCAGCACATATACATAAAT | CGCTTCACGAATTTGCGTGTCAT |
CSN2 | TGAGGAACAGCAGCAAACAGAG | TGGGAGGCTGTTATGGATGG |
CSN3 | ACAACCAATACGCTGTGAGAA | TTGGCAGGCACAGTATTTG |
JAK2 | CCTGGCAACAGACAAATGGA | ACCCTTGCCAAGTTGCTGTA |
STAT5 | CTTCCCGTGGTTGTCATCGT | CGGCCTTGAATTTCATGTTG |
mTOR | GTGATGAACTTTGAGGCTGTGC | CAAGGAGATGGAACGGAAGAA |
MAPK | AAGTCCGAGTCGCCATCAAG | TGGTGTTGAGCAGCAGGTTG |
表3 qRT-PCR引物信息
Table 3 Primer information for qRT-PCR
基因 Gene | 正向引物序列 Forward primer sequence (5'→3') | 反向引物序列 Reverse primer sequence (5'→3') |
---|---|---|
β-actin | CTGTTAGCTGCGTTACACCCTT | TGCTGTCACCTTCACCGTTC |
bta-miR-146b | GGGTGAGAACTGAATTCCATA | GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACACAGCC |
U6 | GCTTCGGCAGCACATATACATAAAT | CGCTTCACGAATTTGCGTGTCAT |
CSN2 | TGAGGAACAGCAGCAAACAGAG | TGGGAGGCTGTTATGGATGG |
CSN3 | ACAACCAATACGCTGTGAGAA | TTGGCAGGCACAGTATTTG |
JAK2 | CCTGGCAACAGACAAATGGA | ACCCTTGCCAAGTTGCTGTA |
STAT5 | CTTCCCGTGGTTGTCATCGT | CGGCCTTGAATTTCATGTTG |
mTOR | GTGATGAACTTTGAGGCTGTGC | CAAGGAGATGGAACGGAAGAA |
MAPK | AAGTCCGAGTCGCCATCAAG | TGGTGTTGAGCAGCAGGTTG |
图1 转染后乳腺上皮细胞中bta-miR-146b的表达情况 柱上无相同小写字母表示差异显著(P<0.05)。
Fig.1 Expression level of bta-miR-146b in transfected mammary epithelial cells Bars marked without the same lowercase letter indicated significant differences(P<0.05).
图2 未转染组中各基因在非热应激与热应激下的相对表达量 NHS,非热应激;HS,热应激。柱上无相同大写字母表示同一基因在不同处理下差异极显著(P<0.01)。下同。
Fig.2 Relative expression levels of each gene in the non-transfected group under non-heat stress and heat stress conditions NHS, Non-heat stress condition; HS, Heat stress condition. Bars marked without the same uppercase letter indicated the same gene had significant differences (P<0.01) under different treatments. The same as below.
图3 转染组乳腺上皮细胞中各基因在热应激和非热应激下的表达情况 (A)转染bta-miR-146b 模拟物后乳腺上皮细胞中各基因在热应激与非热应激下的表达情况;(B)转染bta-miR-146b 抑制物后乳腺上皮细胞中各基因在热应激与非热应激下的表达情况。
Fig.3 The expression of each gene in transfected mammary epithelial cells under heat stress and non-heat stress condition (A)The expression of each gene in mammary epithelial cells after transfection of bta-miR-146b mimics under the heat stress and non-heat stress condition. (B)The expression of each gene in mammary epithelial cells after transfection of bta-miR-146b inhibitor under heat stress and non-heat stress condition.
图4 非热应激条件下乳腺上皮细胞中各基因的表达情况 (A)非热应激条件下转染bta-miR-146b模拟物后各基因的相对表达情况;(B)非热应激条件下转染bta-miR-146b抑制物后各基因的相对表达情况。无相同大写字母表示同一基因在不同处理下具有极显著差异(P<0.01);无相同小写字母表示同一基因在不同处理下具有显著差异(P<0.05)。下同。
Fig.4 The expression of each gene in mammary epithelial cells under non-heat stress condition (A) The relative expression of each gene after transfection of bta-miR-146b mimics under non-heat stress condition. (B) The relative expression of each gene after transfection of bta-miR-146b inhibitor under non-heat stress condition. Bars marked without the same uppercase letter indicate that the same gene had significant differences at P<0.01 under different treatments; Bars marked without the same lowercase letter indicate that the same gene had significant differences at P<0.05 under different treatments. The same as belw.
图5 热应激条件下转染组乳腺上皮细胞中各基因的表达情况 (A)热应激条件下转染bta-miR-146b 模拟物后各基因的相对表达情况;(B)热应激条件下转染bta-miR-146b 抑制物后各基因的相对表达情况。
Fig.5 The expression of each gene in transfected mammary epithelial cells under heat stress condition (A)The relative expression of each gene after transfection of bta-miR-146b mimics under heat stress condition; (B)The relative expression of each gene after transfection of bta-miR-146b inhibitor under heat stress condition.
[1] | 刘宝宝, 贾晶莹, 孟桂智, 等. mtr-miR156a在奶牛乳腺上皮细胞的靶基因筛选鉴定及其调控奶牛乳蛋白生物合成的研究[J]. 动物营养学报, 2023, 35(11): 7355-7367. |
LIU B B, JIA J Y, MENG G Z, et al. Screening and identification of target genes of mtr-miR156a in bovine mammary gland epithelial cells and its regulation on milk protein biosynthesis in dairy cows[J]. Chinese Journal of Animal Nutrition, 2023, 35(11): 7355-7367. (in Chinese with English abstract) | |
[2] | WIGHTMAN B, HA I, RUVKUN G. Posttranscriptional regulation of the heterochronic gene Lin-14 by Lin-4 mediates temporal pattern formation in C. elegans[J]. Cell, 1993, 75(5): 855-862. |
[3] | 刘杰, 魏祥飞, 曲波, 等. miR-214对奶牛乳腺上皮细胞泌乳功能的影响[J]. 中国乳品工业, 2022, 50(9): 15-18. |
LIU J, WEI X F, QU B, et al. Effect of miR-214 on the lactation function in bovine mammary epithelial cells[J]. China Dairy Industry, 2022, 50(9): 15-18. (in Chinese with English abstract) | |
[4] | 于蕾, 王春梅, 崔英俊, 等. Bta-miR-142-3p对奶牛乳腺上皮细胞泌乳功能的影响[J]. 中国乳品工业, 2015, 43(5): 8-11. |
YU L, WANG C M, CUI Y J, et al. Impact of bta-miR-142-3p on lactation function of dairy cow mammary epithelial cells[J]. China Dairy Industry, 2015, 43(5): 8-11. (in Chinese with English abstract) | |
[5] | 高胜涛. 热应激对奶牛瘤胃和乳腺组织乳蛋白前体物代谢的影响[D]. 北京: 中国农业科学院, 2021. |
GAO S T. Metabolism of milk protein precursors in the rumen and mammary tissues of dairy cows under heat stress[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese with English abstract) | |
[6] | 项锡恩, 邓铭, 孙宝丽, 等. 热应激对奶牛生产和健康的影响及其减缓措施研究进展[J]. 中国畜牧杂志, 2024, 60(1): 54-60. |
XIANG X E, DENG M, SUN B L, et al. Research progress on the effect of heat stress on production performance and health of dairy cows and its mitigation measures[J]. Chinese Journal of Animal Science, 2024, 60(1): 54-60. (in Chinese with English abstract) | |
[7] | 吕美, 刘红云. 热应激对奶牛乳蛋白合成的影响机制[J]. 中国畜牧杂志, 2023, 59(4): 63-68. |
LYU M, LIU H Y. Mechanism of heat stress affecting milk protein synthesis in dairy cows[J]. Chinese Journal of Animal Science, 2023, 59(4): 63-68. (in Chinese with English abstract) | |
[8] | LI Q L, YANG C H, DU J, et al. Characterization of miRNA profiles in the mammary tissue of dairy cattle in response to heat stress[J]. BMC Genomics, 2018, 19(1): 975. |
[9] | 潘琪琪. Bta-miR-224调控奶牛乳腺上皮细胞TG生成和凋亡机制的研究[D]. 大庆: 黑龙江八一农垦大学, 2017. |
PAN Q Q. The research on mechanism of bta-miR-224 regulating triglycerideogenesis and apoptosis in dairy cow mammary epithelial cells[D]. Daqing: Heilongjiang Bayi Agricultural University, 2017. (in Chinese with English abstract) | |
[10] | GUO Z T, GAO S T, OUYANG J L, et al. Impacts of heat stress-induced oxidative stress on the milk protein biosynthesis of dairy cows[J]. Animals, 2021, 11(3): 726. |
[11] | 殷海全, 彭来营. 奶牛热应激的危害及预防措施[J]. 北方牧业, 2023(20): 29. |
YIN H Q, PENG L Y. Harm and preventive measures of heat stress in dairy cows[J]. Beifang Muye, 2023(20): 29. (in Chinese) | |
[12] | 李潇, 胡亚鹏, 程建波, 等. 硒对奶牛热应激的缓解及其作用机制研究进展[J]. 动物营养学报, 2023, 35(9): 5475-5484. |
LI X, HU Y P, CHENG J B, et al. Research progress on alleviation of heat stress in dairy cows by selenium and its mechanism[J]. Chinese Journal of Animal Nutrition, 2023, 35(9): 5475-5484. (in Chinese with English abstract) | |
[13] | 刘雪松, 黄宝银, 陈亮, 等. 中药饲料添加剂在奶牛养殖中的应用[J]. 特种经济动植物, 2023, 26(11): 83-84. |
LIU X S, HUANG B Y, CHEN L, et al. Application of traditional Chinese medicine feed additives in dairy farming[J]. Special Economic Animals and Plants, 2023, 26(11): 83-84. (in Chinese) | |
[14] | 王玉娟. Bta-miR-34b调节奶牛乳腺上皮细胞乳脂肪合成机理研究[D]. 杨凌: 西北农林科技大学, 2021. |
WANG Y J. Study on the mechanism of bta-miR-34b regulating milk fat synthesis in dairy cow mammary epithelial cells[D]. Yangling: Northwest A & F University, 2021. (in Chinese with English abstract) | |
[15] | 史琳琳. 奶牛乳腺上皮细胞JAK2-STAT5和mTOR信号通路协同调控乳蛋白合成[D]. 哈尔滨: 东北农业大学, 2013. |
SHI L L. Collaborative regulation of milk protein synthesis between JAK2-STAT5 and mTOR signalling pathways in bovine mammary epithelial cells[D]. Harbin: Northeast Agricultural University, 2013. (in Chinese with English abstract) | |
[16] | MAHMOUDI P, ROSTAMZADEH J, RASHIDI A, et al. A meta-analysis on association between CSN3 gene variants and milk yield and composition in cattle[J]. Animal Genetics, 2020, 51(3): 369-381. |
[17] | FONTANESI L, CALÒ D G, GALIMBERTI G, et al. A candidate gene association study for nine economically important traits in Italian Holstein cattle[J]. Animal Genetics, 2014, 45(4): 576-580. |
[18] | 吕小青, 杨宇泽, 刘林, 等. 与奶牛乳脂及乳蛋白合成有关的候选基因研究进展[J]. 中国奶牛, 2020(12): 22-25. |
LV X Q, YANG Y Z, LIU L, et al. Progress on candidate genes of milk fat and milk protein in dairy cows[J]. China Dairy Cattle, 2020(12): 22-25. (in Chinese with English abstract) | |
[19] | TIAN M, QI Y G, ZHANG X L, et al. Regulation of the JAK2-STAT5 pathway by signaling molecules in the mammary gland[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 604896. |
[20] | 汪东阳, 谢月琴, 罗君谊, 等. 调控乳蛋白合成信号通路的研究进展[J]. 中国奶牛, 2020(5): 6-11. |
WANG D Y, XIE Y Q, LUO J Y, et al. Research progress in regulating the signal pathway of milk protein synthesis[J]. China Dairy Cattle, 2020(5): 6-11. (in Chinese with English abstract) | |
[21] | 穆莹, 王淼, 冯一兵, 等. MAP3K9对奶牛乳腺上皮细胞增殖及乳蛋白合成的影响[J]. 中国乳品工业, 2015, 43(7): 16-20. |
MU Y, WANG M, FENG Y B, et al. Effects of MAP3K9 on proliferation and milk protein synthesis in bovine mammary epithelial cells[J]. China Dairy Industry, 2015, 43(7): 16-20. (in Chinese with English abstract) | |
[22] | 袁涛. bta-miR-1296调控奶牛乳腺成纤维细胞增殖、炎性反应和细胞外基质合成的研究[D]. 大庆: 黑龙江八一农垦大学, 2023. |
YUAN T. Bta-miR-1296 regulates the proliferation, inflammatory response and synthesis of extracellular matrix of bovine mammary fibroblasts[D]. Daqing: Heilongjiang Bayi Agricultural University, 2023. (in Chinese with English abstract) | |
[23] | WU X, HUANG J F, LIU Y N, et al. Bta-miR-106b regulates bovine mammary epithelial cell proliferation, cell cycle, and milk protein synthesis by targeting the CDKN1A gene[J]. Genes, 2022, 13(12): 2308. |
[24] | WANG Y, WU J, XIA S W, et al. miR-27a-3p relieves heat stress-induced mitochondrial damage and aberrant milk protein synthesis through MEK/ERK pathway in BMECs[J]. Cell Stress and Chaperones, 2023, 28(3): 265-274. |
[25] | CAO Q Q, LI H H, LIU X, et al. miR-24-3p regulates cell proliferation and milk protein synthesis of mammary epithelial cells through menin in dairy cows[J]. Journal of Cellular Physiology, 2019, 234(2): 1522-1533. |
[26] | 余祖华, 高梦茹, 何雷, 等. mdv1-miR-M4-5p对MDCC-MSB1细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2024, 55(8): 3678-3687. |
YU Z H, GAO M R, HE L, et al. Effects of mdv1-miR-M4-5p encoded by MDV on proliferation and apoptosis of MDCC-MSB1 cells[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3678-3687. (in Chinese with English abstract) |
[1] | 秦凯鹏, 门小明, 徐子伟. 猪肉鲜味物质及其形成机理研究进展[J]. 浙江农业学报, 2024, 36(3): 719-728. |
[2] | 李娅楠, 冶文兴, 朱相德, 陈林, 徐晓锋, 张力莉. 基于LC-MS/MS技术研究稻草替代部分玉米青贮对奶牛血浆代谢产物的影响[J]. 浙江农业学报, 2023, 35(2): 266-274. |
[3] | 李艳艳, 卜建华, 韩丽云, 王川川, 母童. 奶牛乳脂代谢关键候选基因的鉴定与功能分析[J]. 浙江农业学报, 2023, 35(12): 2794-2808. |
[4] | 吕倩, 骆巧, 罗雪, 陈久兵, 马莉, 罗正中, 姚学萍, 余树民, 沈留红, 曹随忠. 基于高通量测序技术分析奶牛场垫沙和橡胶垫卧床中的菌群差异[J]. 浙江农业学报, 2022, 34(7): 1377-1385. |
[5] | 谭天宇, 才冬杰, 王之盛, 左之才. 糖浓度变化对牛肺泡巨噬细胞促炎细胞因子释放的影响[J]. 浙江农业学报, 2022, 34(3): 464-470. |
[6] | 杨思瑞, 杨卓, 火苗, 张洁, 张力莉, 李胜利, 徐晓锋. 荷斯坦奶牛不同群体牛舍土壤细菌菌群结构差异分析[J]. 浙江农业学报, 2022, 34(2): 275-283. |
[7] | 蒋婧, 任航行, 周鹏, 孙晓燕, 李杰, 付琳, 张丽, 刘良佳, 王高富. MC1R c.676A>G与山羊皮肤色素沉积的关系及其对黑色素合成的影响[J]. 浙江农业学报, 2022, 34(12): 2629-2639. |
[8] | 沈留红, 程李杰, 尤留超, 雍康, 罗正中, 陈久兵, 骆巧, 余树民, 曹随忠. 热应激与喷淋-风扇系统对不同泌乳阶段奶牛生理和生产性能的影响[J]. 浙江农业学报, 2021, 33(9): 1602-1610. |
[9] | 赵洪喜, 刘继兵. 宁夏部分地区奶牛球虫感染情况调查与遗传进化分析[J]. 浙江农业学报, 2021, 33(8): 1379-1384. |
[10] | 沈留红, 钱柏霖, 尤留超, 张钺, 莘余, 吕尚揆, 肖劲邦, 余树民, 苏柘僮, 董可, 杨世林, 冯育林, 曹随忠. 白头翁皂苷B4对临床型奶牛乳房炎疗效和血清炎性因子、免疫因子的影响[J]. 浙江农业学报, 2021, 33(7): 1184-1191. |
[11] | 韩玉梅, 谢晶莹, 毕英杰, 许淑娟, 冯若飞. 脑心肌炎病毒VP1蛋白抑制Ⅰ型IFN信号通路和促进病毒体外增殖[J]. 浙江农业学报, 2021, 33(1): 18-26. |
[12] | 吴佳, 陈朗, 姜涛, 黄国明, 李倬, 李耀东, 张丽, 刘丽霞. 奶牛CSF3基因遗传多态性筛查及其生物信息学分析[J]. 浙江农业学报, 2020, 32(6): 986-993. |
[13] | 李秋玲, 齐颖, 王琛, 张一名, 王新妤, 尚校兰, 贾永红, 李美茹, 储明星. 热应激对中国荷斯坦牛乳腺组织基因表达及信号通路的影响[J]. 浙江农业学报, 2020, 32(5): 770-778. |
[14] | 宋志强, 丁祥, 唐贤, 朱淼, 侯怡铃. 松乳菇子实体两个发育时期的转录组分析[J]. 浙江农业学报, 2020, 32(2): 337-347. |
[15] | 曾学琴, 柳陈坚, 杨雪, 李晓然. 高通量测序法检测奶牛乳房炎关联微生物群落结构及多样性[J]. 浙江农业学报, 2019, 31(9): 1437-1445. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||