浙江农业学报 ›› 2023, Vol. 35 ›› Issue (12): 2794-2808.DOI: 10.3969/j.issn.1004-1524.20221710
李艳艳1(), 卜建华2, 韩丽云1, 王川川3, 母童3,*(
)
收稿日期:
2022-11-29
出版日期:
2023-12-25
发布日期:
2023-12-27
作者简介:
李艳艳(1976—),女,宁夏银川人,学士,高级畜牧师,研究方向为动物繁育。E-mail: 13909513189@163.com
通讯作者:
*母童,E-mail: mtlv3h@163.com
基金资助:
LI Yanyan1(), BU Jianhua2, HAN Liyun1, WANG Chuanchuan3, MU Tong3,*(
)
Received:
2022-11-29
Online:
2023-12-25
Published:
2023-12-27
摘要:
为深入挖掘影响荷斯坦奶牛乳脂代谢的关键候选基因,利用实时荧光定量聚合酶链式反应(qRT-PCR)技术检测课题组前期通过转录组和加权基因共表达网络分析(WGCNA)得到的15个候选差异基因的组织表达谱。确定乳脂代谢关键候选基因后检测其在原代奶牛乳腺上皮细胞(BMECs)中的定位,并进行克隆测序,以及结构和功能分析。结果表明,ENPP2、PI4K2A、CTSH和PTPRR基因在乳腺组织中的表达水平均高于其他组织,同时PI4K2A和CTSH在乳腺组织和原代BMECs中的表达相对于其他基因处于较高水平。通过qRT-PCR结合前期转录组测序的结果,最终确定PI4K2A为调控奶牛乳脂合成的关键候选基因,其主要在BMECs的细胞质中表达。克隆测序发现,奶牛PI4K2A基因编码区(CDS)全长1 440 bp,编码479个氨基酸。结构和功能分析表明,PI4K2A为非分泌型且不稳定的亲水蛋白,含有40个磷酸化位点,翻译后的修饰作用非常丰富。PI4K2A蛋白的二级和三级结构均以无规则卷曲为主,α螺旋次之,且在不同物种中具有较高的保守性。本研究确定PI4K2A为奶牛乳脂代谢的重要候选基因,研究结果可以为奶牛乳脂代谢的分子调控机制研究提供理论依据。
中图分类号:
李艳艳, 卜建华, 韩丽云, 王川川, 母童. 奶牛乳脂代谢关键候选基因的鉴定与功能分析[J]. 浙江农业学报, 2023, 35(12): 2794-2808.
LI Yanyan, BU Jianhua, HAN Liyun, WANG Chuanchuan, MU Tong. Identification and functional analysis of key candidate genes for milk fat metabolism in dairy cattle[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2794-2808.
基因登录号 GenBank ID | 基因 Gene | 上游引物序列 Forward primer sequence(5’→3’) | 下游引物序列 Reverse primer sequence(5’→3’) | 产物长度 Product length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|---|---|
NM_001034034.2 | GAPDH | TCGGAGTGAACGGATTCGG | TGATGACGAGCTTCCCGTTC | 192 | 60.0 |
NM_173893.3 | B2M | ACACCCACCAGAAGATGGAAAG | CAGGTCTGACTGCTCCGATTTA | 124 | 60.0 |
NR_036642.1 | 18S RNA | ACTTTCGATGGTAGTCGCTGTGC | TCCTTGGATGTGGTAGCCGTTT | 105 | 60.0 |
NM_001167834.1 | CES4A | TTTGAGCACTACGCTCCTGG | CCACCATTGGGGTTTCCTGT | 188 | 58.2 |
NM_001163802.3 | ATP8A2 | GCCCACAGCTGGAGAAGATA | GTACTTGGCCGTGCTGATCT | 189 | 59.4 |
NM_001034385.2 | CTSH | CGCCCAGAACTTCAACAACC | TACTTGCAGTCACCATCCTGG | 132 | 59.4 |
NM_001100297.1 | APOL3 | GCAGACTCCTGGGGTGAAAC | TGGACAAATCAGCCTCGGTC | 247 | 58.2 |
NM_001205544.1 | DKK1 | ATTGACAACCACCAGCCGTA | AGAAGGCATGCATATCCCGT | 189 | 59.4 |
NM_001080293.1 | ENPP2 | TCACTTTTGCCGTCGGTGTCAA | AATCAGGGGGTCCAGCCTCTTG | 174 | 58.0 |
NM_001083644.1 | BCAT1 | TGTGTTGTTTGCCCTGTTTC | GTCGCTCTCTTCTCTTCCGT | 138 | 59.5 |
NM_001113261.1 | PTPRR | TGAGGACAAGACAGCCAACAG | AAAGGAGAAGGGCAGACAGAG | 129 | 56.4 |
NM_001075477 | U6 | CTCGCTTCGGCAGCACA | AACGCTTCACGAATTTGCGT | 132 | 58.2 |
NM_173979.3 | β-actin | CATCGGCAATGAGCGGTTCC | ACCGTGTTGGCGTAGAGGTC | 80 | 60.0 |
NM_001083706.1 | PDGFD | GTGAAAAAGTACCACGAGGTGT | TAAGTTCGGTTGCTGGTGGG | 237 | 58.2 |
NM_174680.2 | KCNMA1 | CTAACCTGGAGCTGGAAGCCT | ACGCATCTGCTGACTCTATCTTGA | 117 | 58.2 |
XM_005208272.4 | ZFYVE28 | ACCGCCTGTTTGTCTGTATCTC | TTCCTTGTCGTCCGTCTCTG | 128 | 58.2 |
NM_001100316.1 | PI4K2A | CGGAACCCCTTCCTGAGAAC | CCAGTCTGTGTCCCGAGAGT | 161 | 58.2 |
NM_001100316.1 | PI4K2A(CDS) | ATGGACGAGACGAGCCCACT | CTACCACCAGGAGAAGAAGGG | 1 440 | 58.0 |
NM_001097568.2 | ID1 | CTGGGATCTGGAGTTGGAGC | GGAACACACGCCGCCTCT | 135 | 58.2 |
NM_001101043.2 | VEGFD | CCACTCGCAGGAATGGAAGATCAC | GAAAGGGGCATCTGTCCTCACA | 238 | 58.2 |
NM_001037319.1 | SLC16A1 | TGGCAGCACCTTTATCCTCTAC | ACTCCACAATGGTCACCAATCC | 160 | 58.2 |
表1 引物序列与退火温度
Table 1 Primer sequence and annealing temperature
基因登录号 GenBank ID | 基因 Gene | 上游引物序列 Forward primer sequence(5’→3’) | 下游引物序列 Reverse primer sequence(5’→3’) | 产物长度 Product length/bp | 退火温度 Annealing temperature/℃ |
---|---|---|---|---|---|
NM_001034034.2 | GAPDH | TCGGAGTGAACGGATTCGG | TGATGACGAGCTTCCCGTTC | 192 | 60.0 |
NM_173893.3 | B2M | ACACCCACCAGAAGATGGAAAG | CAGGTCTGACTGCTCCGATTTA | 124 | 60.0 |
NR_036642.1 | 18S RNA | ACTTTCGATGGTAGTCGCTGTGC | TCCTTGGATGTGGTAGCCGTTT | 105 | 60.0 |
NM_001167834.1 | CES4A | TTTGAGCACTACGCTCCTGG | CCACCATTGGGGTTTCCTGT | 188 | 58.2 |
NM_001163802.3 | ATP8A2 | GCCCACAGCTGGAGAAGATA | GTACTTGGCCGTGCTGATCT | 189 | 59.4 |
NM_001034385.2 | CTSH | CGCCCAGAACTTCAACAACC | TACTTGCAGTCACCATCCTGG | 132 | 59.4 |
NM_001100297.1 | APOL3 | GCAGACTCCTGGGGTGAAAC | TGGACAAATCAGCCTCGGTC | 247 | 58.2 |
NM_001205544.1 | DKK1 | ATTGACAACCACCAGCCGTA | AGAAGGCATGCATATCCCGT | 189 | 59.4 |
NM_001080293.1 | ENPP2 | TCACTTTTGCCGTCGGTGTCAA | AATCAGGGGGTCCAGCCTCTTG | 174 | 58.0 |
NM_001083644.1 | BCAT1 | TGTGTTGTTTGCCCTGTTTC | GTCGCTCTCTTCTCTTCCGT | 138 | 59.5 |
NM_001113261.1 | PTPRR | TGAGGACAAGACAGCCAACAG | AAAGGAGAAGGGCAGACAGAG | 129 | 56.4 |
NM_001075477 | U6 | CTCGCTTCGGCAGCACA | AACGCTTCACGAATTTGCGT | 132 | 58.2 |
NM_173979.3 | β-actin | CATCGGCAATGAGCGGTTCC | ACCGTGTTGGCGTAGAGGTC | 80 | 60.0 |
NM_001083706.1 | PDGFD | GTGAAAAAGTACCACGAGGTGT | TAAGTTCGGTTGCTGGTGGG | 237 | 58.2 |
NM_174680.2 | KCNMA1 | CTAACCTGGAGCTGGAAGCCT | ACGCATCTGCTGACTCTATCTTGA | 117 | 58.2 |
XM_005208272.4 | ZFYVE28 | ACCGCCTGTTTGTCTGTATCTC | TTCCTTGTCGTCCGTCTCTG | 128 | 58.2 |
NM_001100316.1 | PI4K2A | CGGAACCCCTTCCTGAGAAC | CCAGTCTGTGTCCCGAGAGT | 161 | 58.2 |
NM_001100316.1 | PI4K2A(CDS) | ATGGACGAGACGAGCCCACT | CTACCACCAGGAGAAGAAGGG | 1 440 | 58.0 |
NM_001097568.2 | ID1 | CTGGGATCTGGAGTTGGAGC | GGAACACACGCCGCCTCT | 135 | 58.2 |
NM_001101043.2 | VEGFD | CCACTCGCAGGAATGGAAGATCAC | GAAAGGGGCATCTGTCCTCACA | 238 | 58.2 |
NM_001037319.1 | SLC16A1 | TGGCAGCACCTTTATCCTCTAC | ACTCCACAATGGTCACCAATCC | 160 | 58.2 |
图1 BMECs复苏培养 A,复苏培养24 h的BMECs,绿色箭头指向分泌的乳滴;B,复苏培养3 d的BMECs,绿色箭头指向细胞接触后的隆起。
Fig.1 Resuscitation culture of BMECs A, BMECs after 24 h of resuscitation culture, the green arrow points to the secreted milk droplet; B, BMECs after 3 d of resuscitation culture, with green arrows pointing to the bulge after cell contact.
图2 奶牛不同组织和BMECs的总RNA提取结果 A,1~7分别为奶牛小肠、肝、肾、子宫、心脏、卵巢和乳腺的总RNA提取结果;B,1和2是BMECs总RNA提取结果。M为DL 2000 DNA分子量标准。
Fig.2 Results of total RNA extraction from different tissues and BMECs of dairy cow A, 1-7 are the results of total RNA extraction from the small intestine, liver, kidney, uterus, heart, ovary and mammary gland of cow, respectively; B, 1 and 2 are the results of total RNA extraction from BMECs. M is DL 2000 DNA marker.
图3 不同内参基因的稳定性 A,不同内参基因Cq值的标准偏差和变异系数;B,不同内参基因Cq值的分布。
Fig.3 Stability of different internal reference genes A, Standard deviation and coefficient of variation of Cq values of different internal reference genes; B, Cq values of different internal reference genes.
图4 乳脂代谢候选差异基因在奶牛不同组织中的相对表达水平 柱上无相同小写字母表示差异显著(P<0.05)。下同。
Fig.4 Relative expression levels of candidate differential genes of milk fat metabolism in different tissues of dairy cow The bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
图5 乳脂代谢候选差异基因在乳腺(A)和BMECs(B)中的表达差异 *表示与其他基因之间差异显著。
Fig.5 The expression differences of candidate differential genes of milk fat metabolism in mammary gland (A) and BMECs (B) * represented significant difference compared with other genes.
图7 PI4K2A基因克隆 A,PI4K2A基因CDS区PCR扩增结果,1和2为扩增产物;B,扩增产物回收纯化结果,1和2为回收产物;C,PI4K2A基因的菌液扩增结果,1~8为扩增产物。M为DL2000 DNA分子量标准。
Fig.7 Cloning of PI4K2A gene A, Results of PCR amplification of CDS region of PI4K2A gene, 1 and 2 are amplification products; B, Results of amplification product recovery and purification, 1 and 2 are recovered products; C, Results of bacteria amplification of PI4K2A gene, 1-8 are amplification products. M is DL2000 DNA marker.
图9 PI4K2A蛋白功能预测 A,疏水性/亲水性预测;B,信号肽预测;C,跨膜结构预测;D,磷酸化位点预测。
Fig.9 Function prediction of PI4K2A protein A, Hydrophobicity/hydrophilicity prediction; B, Signal peptide prediction; C, Transmembrane structure prediction; D, Phosphorylation site prediction.
预测软件 Prediction software | 预测含量Prediction content/% | |||||
---|---|---|---|---|---|---|
细胞质 Cytoplasm | 细胞核 Cell nucleus | 线粒体 Mitochondria | 液泡 Vacuole | 高尔基体 Golgi apparatus | 细胞骨架 Cytoskeleton | |
Euk-mPLOC 2.0 | 100 | 0 | 0 | 0 | 0 | 0 |
YLoc | 87.1 | 12.8 | 0.1 | 0 | 0 | 0 |
MultiLoc2 | 86.0 | 13.0 | 1.0 | 0 | 0 | 0 |
PSORT II Prediction | 34.8 | 26.1 | 21.8 | 8.7 | 4.3 | 4.3 |
表2 PI4K2A蛋白的亚细胞定位预测
Table 2 Subcellular localization prediction of PI4K2A protein
预测软件 Prediction software | 预测含量Prediction content/% | |||||
---|---|---|---|---|---|---|
细胞质 Cytoplasm | 细胞核 Cell nucleus | 线粒体 Mitochondria | 液泡 Vacuole | 高尔基体 Golgi apparatus | 细胞骨架 Cytoskeleton | |
Euk-mPLOC 2.0 | 100 | 0 | 0 | 0 | 0 | 0 |
YLoc | 87.1 | 12.8 | 0.1 | 0 | 0 | 0 |
MultiLoc2 | 86.0 | 13.0 | 1.0 | 0 | 0 | 0 |
PSORT II Prediction | 34.8 | 26.1 | 21.8 | 8.7 | 4.3 | 4.3 |
图10 BMECs的细胞核、细胞质总RNA提取与PI4K2A mRNA的亚细胞定位 A,BMECs的核、质总RNA提取结果;B,PI4K2A在BMECs中的分布情况。
Fig.10 Total RNA extraction from nucleus and plasma of BMECs and subcellular localization of PI4K2A mRNA A, Results of nuclear and plasma total RNA extraction from BMECs; B, The distribution of PI4K2A in BMECs.
物种 Species | 占比Percentage/% | |||
---|---|---|---|---|
α螺旋 α-Helix | 延伸链 Extended chain | β转角 β-Turn | 无规则卷曲 Random coil | |
牛Bos taurus | 34.66 | 14.61 | 6.47 | 44.26 |
绵羊Ovis aries | 32.57 | 14.61 | 6.26 | 46.56 |
山羊Capra hircus | 32.99 | 14.61 | 6.26 | 46.14 |
水牛 | 33.40 | 15.24 | 6.89 | 44.47 |
Bubalus bubalis | ||||
人Homo sapiens | 35.07 | 14.41 | 6.05 | 44.47 |
猪Sus scrofa | 34.86 | 14.61 | 5.01 | 45.51 |
小鼠Mus musculus | 32.36 | 15.45 | 5.43 | 46.76 |
大鼠 | 33.26 | 15.27 | 6.49 | 44.98 |
Rattus norvegicus | ||||
原鸡Gallus gallus | 34.12 | 14.59 | 6.01 | 45.28 |
表3 不同物种PI4K2A蛋白二级结构预测
Table 3 Predicted secondary structure of PI4K2A protein in different species
物种 Species | 占比Percentage/% | |||
---|---|---|---|---|
α螺旋 α-Helix | 延伸链 Extended chain | β转角 β-Turn | 无规则卷曲 Random coil | |
牛Bos taurus | 34.66 | 14.61 | 6.47 | 44.26 |
绵羊Ovis aries | 32.57 | 14.61 | 6.26 | 46.56 |
山羊Capra hircus | 32.99 | 14.61 | 6.26 | 46.14 |
水牛 | 33.40 | 15.24 | 6.89 | 44.47 |
Bubalus bubalis | ||||
人Homo sapiens | 35.07 | 14.41 | 6.05 | 44.47 |
猪Sus scrofa | 34.86 | 14.61 | 5.01 | 45.51 |
小鼠Mus musculus | 32.36 | 15.45 | 5.43 | 46.76 |
大鼠 | 33.26 | 15.27 | 6.49 | 44.98 |
Rattus norvegicus | ||||
原鸡Gallus gallus | 34.12 | 14.59 | 6.01 | 45.28 |
图12 不同物种PI4K2A蛋白空间结构相似性分析 红色箭头指向表示相对于牛而言,其他物种PI4K2A蛋白空间结构发生变化的位置。
Fig.12 Similarity analysis of the spatial structure of PI4K2A protein in different species Red arrows indicate the locations where the spatial structure of PI4K2A protein changes in other species relative to that of cattle.
[1] | CHEN Z, CHU S F, WANG X L, et al. MicroRNA-106b regulates milk fat metabolism via ATP binding cassette subfamily A member 1 (ABCA1) in bovine mammary epithelial cells[J]. Journal of Agricultural and Food Chemistry, 2019, 67(14): 3981-3990. |
[2] | BELURY M A. Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action[J]. Annual Review of Nutrition, 2002, 22: 505-531. |
[3] | ZHOU C H, SHEN D, LI C, et al. Comparative transcriptomic and proteomic analyses identify key genes associated with milk fat traits in Chinese Holstein cows[J]. Frontiers in Genetics, 2019, 10: 672. |
[4] | BAUMAN D E, MATHER I H, WALL R J, et al. Major advances associated with the biosynthesis of milk[J]. Journal of Dairy Science, 2006, 89(4): 1235-1243. |
[5] | XU B, GERIN I, MIAO H Z, et al. Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity[J]. PLoS One, 2010, 5(12): e14199. |
[6] | MU T, HU H H, FENG X F, et al. Screening and conjoint analysis of key lncRNAs for milk fat metabolism in dairy cows[J]. Frontiers in Genetics, 2022, 13: 772115. |
[7] | MU T, HU H H, MA Y F, et al. Identifying key genes in milk fat metabolism by weighted gene co-expression network analysis[J]. Scientific Reports, 2022, 12: 6836. |
[8] | 王进. 核质分离检测LncRNA/circRNA的亚细胞定位[EB/OL]. (2021-05-18) [2022-11-25]. https://www.jingege.wang/2021/05/18/%e6%a0%b8%e8%b4%a8%e5%88%86%e7%a6%bb%e6%a3%80%e6%b5%8blncrna-circrna%e7%9a%84%e4%ba%9a%e7%bb%86%e8%83%9e%e5%ae%9a%e4%bd%8d/. |
[9] | 李金珂, 张曼曼, 李丽丽, 等. 复杂生物样本管家基因研究进展[J]. 中国国境卫生检疫杂志, 2019, 42(3): 216-220. |
LI J K, ZHANG M M, LI L L, et al. Research progresses on house keeping genes of complex biological samples[J]. Chinese Journal of Frontier Health and Quarantine, 2019, 42(3): 216-220. (in Chinese with English abstract) | |
[10] | HELLEMANS J, MORTIER G, DE PAEPE A, et al. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data[J]. Genome Biology, 2007, 8(2): R19. |
[11] | PFAFFL M W, HORGAN G W, DEMPFLE L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR[J]. Nucleic Acids Research, 2002, 30(9): e36. |
[12] | PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6): 509-515. |
[13] | PÉREZ S, ROYO L J, ASTUDILLO A, et al. Identifying the most suitable endogenous control for determining gene expression in hearts from organ donors[J]. BMC Molecular Biology, 2007, 8: 114. |
[14] | 魏大为. 牛SIX1基因转录调控机制及其对骨骼肌细胞增殖、分化的作用研究[D]. 杨凌: 西北农林科技大学, 2018. |
WEI D W. Transcriptional regulation mechanism of bovine SIX1 gene and its effect on proliferation and differentiation of skeletal muscle cells[D]. Yangling: Northwest A & F University, 2018. (in Chinese with English abstract) | |
[15] | MAO M Q, XUE Y B, HE Y H, et al. Validation of reference genes for quantitative real-time PCR normalization in Ananas comosus var. bracteatus during chimeric leaf development and response to hormone stimuli[J]. Frontiers in Genetics, 2021, 12: 716137. |
[16] | WANG H H, JINT H, LIU H H, et al. Molecular cloning and expression pattern of duck Six1 and its preliminary functional analysis in myoblasts transfected with eukaryotic expression vector[J]. Indian Journal Biochemistry, 2014, 51(4): 271-281. |
[17 ] | HU Y L, CHEN D W, YU B, et al. Effects of dietary fibres on gut microbial metabolites and liver lipid metabolism in growing pigs[J]. Journal of Animal Physiology and Animal Nutrition, 2020, 104(5): 1484-1493. |
[18] | ENGELBRECHT E, MACRAE C A, HLA T. Lysolipids in vascular development, biology, and disease[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41(2): 564-584. |
[19] | LIU S, JIANG H Y, MIN L, et al. Lysophosphatidic acid mediated PI3K/AKT activation contributed to esophageal squamous cell cancer progression[J]. Carcinogenesis, 2021, 42(4): 611-620. |
[20] | SAH J P, HAO N T T, HAN X H, et al. Ectonucleotide pyrophosphatase 2 (ENPP2) plays a crucial role in myogenic differentiation through the regulation by WNT/β-Catenin signaling[J]. The International Journal of Biochemistry & Cell Biology, 2020, 118: 105661. |
[21] | AHN H J, YANG H, AN B S, et al. Expression and regulation of Enpp2 in rat uterus during the estrous cycle[J]. Journal of Veterinary Science, 2011, 12(4): 379-385. |
[22] | 马文斌, 王萌, 潘阳阳, 等. Enpp2基因的分子特征及其在雌性牦牛不同繁殖阶段生殖器官中的表达[J]. 动物医学进展, 2022, 43(1): 58-64. |
MA W B, WANG M, PAN Y Y, et al. Molecular characterization of Enpp2 gene and its expressions in reproductive organs of female yaks (Bos grunniens)[J]. Progress in Veterinary Medicine, 2022, 43(1): 58-64. (in Chinese with English abstract) | |
[23] | BOUTINAUD M, HERVE L, LOLLIVIER V. Mammary epithelial cells isolated from milk are a valuable, non-invasive source of mammary transcripts[J]. Frontiers in Genetics, 2015, 6: 323. |
[24] | NISHIMURA S, NAGASAKI M, OKUDAIRA S, et al. ENPP2 contributes to adipose tissue expansion and insulin resistance in diet-induced obesity[J]. Diabetes, 2014, 63(12): 4154-4164. |
[25] | KIRSCHKE H, LANGER J, WIEDERANDERS B, et al. Cathepsin L: a new proteinase from rat-liver lysosomes[J]. European Journal of Biochemistry, 1977, 74(2): 293-301. |
[26] | 邓桂馨. 牛溶酶体组织蛋白酶家族及其抑制基因的克隆、表达及遗传效应分析[D]. 北京: 中国农业科学院, 2011. |
DENG G X. Cloning, expression and genetic effect analysis of bovine lysosomal cathepsin family and its inhibitory genes[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011. (in Chinese with English abstract) | |
[27] | 黄建文. 天府肉羊CTSL、CTSH和CTSF基因克隆及其在部分组织器官中的表达分析[D]. 雅安: 四川农业大学, 2014. |
HUANG J W. Cloning of CTSL, CTSH and CTSF genes from Tianfu mutton sheep and their expression analysis in some tissues and organs[D]. Ya’an: Sichuan Agricultural University, 2014. (in Chinese with English abstract) | |
[28] | SODHI M, SHARMA M, SHARMA A, et al. Expression profile of different classes of proteases in milk derived somatic cells across different lactation stages of indigenous cows (Bos indicus) and riverine buffaloes (Bubalus bubalis)[J]. Animal Biotechnology, 2023, 34(1): 15-24. |
[29] | TAI A W, BOJJIREDDY N, BALLA T. A homogeneous and nonisotopic assay for phosphatidylinositol 4-kinases[J]. Analytical Biochemistry, 2011, 417(1): 97-102. |
[30] | MINOGUE S, WAUGH M G, DE MATTEIS M A, et al. Phosphatidylinositol 4-kinase is required for endosomal trafficking and degradation of the EGF receptor[J]. Journal of Cell Science, 2006, 119(3): 571-581. |
[31] | PATAER A, OZPOLAT B, SHAO R P, et al. Therapeutic targeting of the PI4K2A/PKR lysosome network is critical for misfolded protein clearance and survival in cancer cells[J]. Oncogene, 2020, 39(4): 801-813. |
[32] | KUČKA M, GONZALEZ-IGLESIAS A E, TOMIĆ M, et al. Calcium-prolactin secretion coupling in rat pituitary lactotrophs is controlled by PI4-kinase alpha[J]. Frontiers in Endocrinology, 2021, 12: 790441. |
[33] | PALOMBO V, MILANESI M, SGORLON S, et al. Genome-wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide polymorphism arrays[J]. Journal of Dairy Science, 2018, 101(12): 11004-11019. |
[34] | 刘伍限, 贾斌, 石国庆. 绵羊FGF5基因编码蛋白的生物信息学分析[J]. 石河子大学学报(自然科学版), 2011, 29(3): 296-300. |
LIU W X, JIA B, SHI G Q. Bioinformatics analysis of the gene encoding FGF5 protein from sheep[J]. Journal of Shihezi University (Natural Science), 2011, 29(3): 296-300. (in Chinese with English abstract) | |
[35] | 张娟, 母童, 虎红红, 等. 静原鸡ELOVL5基因功能生物信息学分析[J]. 基因组学与应用生物学, 2020, 39(12): 5432-5441. |
ZHANG J, MU T, HU H H, et al. Functional bioinformatics analysis of ELOVL5 gene in Jingyuan chicken[J]. Genomics and Applied Biology, 2020, 39(12): 5432-5441. (in Chinese with English abstract) | |
[36] | 张娟, 母童, 顾亚玲, 等. 静原鸡ELOVL2基因多态性及其生物信息学分析[J]. 基因组学与应用生物学, 2020, 39(3): 1003-1012. |
ZHANG J, MU T, GU Y L, et al. Polymorphism and bioinformatics analysis of ELOVL2 gene in Jingyuan chicken[J]. Genomics and Applied Biology, 2020, 39(3): 1003-1012. (in Chinese with English abstract) | |
[37] | 曾日彬, 张霞, 霍金龙, 等. 版纳微型猪近交系PRPS2基因克隆、表达及生物信息学分析[J]. 农业生物技术学报, 2017, 25(3): 425-433. |
ZENG R B, ZHANG X, HUO J L, et al. Cloning, expression and bioinformatics analysis of PRPS2 gene of Banna mini-pig (Sus scrofa) inbred line[J]. Journal of Agricultural Biotechnology, 2017, 25(3): 425-433. (in Chinese with English abstract) | |
[38] | JOVIĆ M, KEAN M J, DUBANKOVA A, et al. Endosomal sorting of VAMP3 is regulated by PI4K2A[J]. Journal of Cell Science, 2014, 127(Pt 17): 3745-3756. |
[39] | 张鹏飞, 濮黎萍, 王焕景, 等. 磷酸化蛋白质组学在哺乳动物精子研究中的应用[J]. 基因组学与应用生物学, 2017, 36(7): 2862-2866. |
ZHANG P F, PU L P, WANG H J, et al. The application of phosphoproteomics in mammalian sperm research[J]. Genomics and Applied Biology, 2017, 36(7): 2862-2866. (in Chinese with English abstract) | |
[40] | 孙潇潇. 卵形鲳鲹Fads2去饱和酶与Elovl5延长酶基因特征与功能研究[D]. 上海: 上海海洋大学, 2017. |
SUN X X. Gene characteristics and functions of Fads2 desaturase and Elovl5 elongase in pomfret ovata[D]. Shanghai: Shanghai Ocean University, 2017. (in Chinese with English abstract) |
[1] | 钟丽萍, 王尖, 吴晓花, 汪颖, 吴新义, 汪宝根, 鲁忠富, 王华森, 李国景. 基于MAGIC群体瓠瓜白粉病抗性的全基因组关联分析[J]. 浙江农业学报, 2023, 35(10): 2398-2407. |
[2] | 杨思瑞, 杨卓, 火苗, 张洁, 张力莉, 李胜利, 徐晓锋. 荷斯坦奶牛不同群体牛舍土壤细菌菌群结构差异分析[J]. 浙江农业学报, 2022, 34(2): 275-283. |
[3] | 蒋秋斐, 蔡正云, 黄增文, 冯小芳, 张娟, 顾亚玲. 奶牛乳脂性状候选基因EEF1D突变位点功能分析[J]. 浙江农业学报, 2020, 32(7): 1155-1159. |
[4] | 贾先波, 杨舒慧, 丁鹏, 陈仕毅, 王杰, 胡深强, 赖松家. 四川丘陵地区中国荷斯坦奶牛围产后期血液生理生化指标分析[J]. 浙江农业学报, 2018, 30(6): 953-960. |
[5] | 王晓杜1,镡忠斌1,王鲁彦1, 何珂1,李开桢2,潘清煜2,*,周圻1,*. 猪繁殖与呼吸综合征的抗病育种研究进展 [J]. 浙江农业学报, 2014, 26(5): 1394-. |
[6] | 宋雪梅;张磊;姜俊芳;石放雄;蒋永清;*. 中国荷斯坦奶牛STAT1全长基因的克隆与序列分析[J]. , 2011, 23(5): 0-889. |
[7] | 董文艳;陈阿琴;王争光;俞颂东;*. 湖羊高繁殖力候选基因ESR的研究[J]. , 2009, 21(6): 0-564. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 434
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 166
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||