浙江农业学报 ›› 2023, Vol. 35 ›› Issue (2): 266-274.DOI: 10.3969/j.issn.1004-1524.2023.02.03
李娅楠(), 冶文兴, 朱相德, 陈林, 徐晓锋, 张力莉(
)
收稿日期:
2021-05-01
出版日期:
2023-02-25
发布日期:
2023-03-14
通讯作者:
张力莉
作者简介:
*张力莉,E-mail: zhanglilinx@126.com基金资助:
LI Yanan(), YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili(
)
Received:
2021-05-01
Online:
2023-02-25
Published:
2023-03-14
Contact:
ZHANG Lili
摘要:
为探讨稻草替代部分玉米青贮后对奶牛的血浆代谢物的影响,本文利用LC-MS/MS物质分离鉴定技术,结合多元统计方法对稻草替代部分玉米青贮前后的代谢产物进行分析。结果表明:稻草替代部分玉米青贮后,两组奶牛血浆中共检测到41种差异代谢物。与对照组相比,试验组奶牛血浆中肾上腺素、β-羟丁酸、烟酰胺、胆酸等22个代谢物上调,谷胱甘肽、皮质醇、皮质酮等19个代谢物下调。由此可见:稻草替代部分玉米青贮后,奶牛脂肪动员增强,抗应激能力下降。研究结果为稻草替代玉米青贮在奶牛日粮中的应用提供参考,为稻草资源的开发利用提供新思路。
中图分类号:
李娅楠, 冶文兴, 朱相德, 陈林, 徐晓锋, 张力莉. 基于LC-MS/MS技术研究稻草替代部分玉米青贮对奶牛血浆代谢产物的影响[J]. 浙江农业学报, 2023, 35(2): 266-274.
LI Yanan, YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili. LC-MS/MS-based study on effect of rice straw instead of partial corn silage on plasma metabolites of dairy cows[J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 266-274.
项目Items | 对照组CS | 试验组RSc |
---|---|---|
原料Ingredients | ||
浓缩料Concentrate feed | 13.84 | 13.84 |
压片玉米Flaked corn | 22.50 | 22.50 |
甜菜颗粒Pelleted sugar beet pulp | 2.00 | 2.00 |
啤酒糟Brewer’s grains | 1.53 | 1.53 |
苜蓿青贮Alfalfa silage | 4.12 | 4.12 |
苜蓿Alfalfa | 10.32 | 10.32 |
全株玉米青贮Whole-plant corn silage | 45.06 | 30.06 |
稻草Rice straw | 15.00 | |
小苏打Sodium bicarbonate | 0.166 | 0.166 |
益康XP Yikang XP | 0.464 | 0.464 |
合计Total | 100.00 | 100.00 |
营养水平Nutrient levels1) | ||
粗蛋白质Crude protein | 11.69 | 10.98 |
产奶净能Net energy/(MJ·kg-1) | 5.94 | 5.58 |
钙Ca | 0.67 | 0.64 |
磷P | 0.28 | 0.26 |
中性洗涤纤维Neutral detergent fiber | 30.74 | 26.25 |
表1 基础日粮组成及营养水平(干物质基础)
Table 1 Composition and nutrient levels of basal diet (dry matter basis) %
项目Items | 对照组CS | 试验组RSc |
---|---|---|
原料Ingredients | ||
浓缩料Concentrate feed | 13.84 | 13.84 |
压片玉米Flaked corn | 22.50 | 22.50 |
甜菜颗粒Pelleted sugar beet pulp | 2.00 | 2.00 |
啤酒糟Brewer’s grains | 1.53 | 1.53 |
苜蓿青贮Alfalfa silage | 4.12 | 4.12 |
苜蓿Alfalfa | 10.32 | 10.32 |
全株玉米青贮Whole-plant corn silage | 45.06 | 30.06 |
稻草Rice straw | 15.00 | |
小苏打Sodium bicarbonate | 0.166 | 0.166 |
益康XP Yikang XP | 0.464 | 0.464 |
合计Total | 100.00 | 100.00 |
营养水平Nutrient levels1) | ||
粗蛋白质Crude protein | 11.69 | 10.98 |
产奶净能Net energy/(MJ·kg-1) | 5.94 | 5.58 |
钙Ca | 0.67 | 0.64 |
磷P | 0.28 | 0.26 |
中性洗涤纤维Neutral detergent fiber | 30.74 | 26.25 |
进样时间Time/min | A/% | B/% |
---|---|---|
0 | 98 | 2 |
1.5 | 98 | 2 |
12 | 0 | 100 |
14 | 0 | 100 |
14.1 | 98 | 2 |
17 | 98 | 2 |
表2 色谱梯度洗脱程序
Table 2 Chromatographic gradient elution procedure
进样时间Time/min | A/% | B/% |
---|---|---|
0 | 98 | 2 |
1.5 | 98 | 2 |
12 | 0 | 100 |
14 | 0 | 100 |
14.1 | 98 | 2 |
17 | 98 | 2 |
图2 CS组和RSc组OPLS-DA得分图 R2Y代表模型在Y轴方向的解释率,Q2代表模型的预测能力。
Fig.2 OPLS-DA scores of CS group and RSc group R2Y represented the interpretation rate of the model in the Y-axis direction, and Q2 represented the prediction ability of the model.
图3 CS组和RSc组置换检验图 Q2intercept和R2intercept表示Q2和R2回归直线与Y轴的截距。
Fig.3 Replacement test chart of CS group and RSc group Q2intercept and R2intercept represented the intercept between Q2 and R2 regression lines and the Y-axis.
序号 | 代谢物 | 变量投影重要度 | P值 | 差异倍数 | 趋势 |
---|---|---|---|---|---|
No. | Metabolites | VIP | P-value | Fold change | Trend |
1 | 氨基水杨酸Mesalamine | 2.09 | 0 | 2.2 | 上调Up |
2 | 4-羟基维甲酸4-Hydroxyretinoic Acid | 1.91 | 0 | 2.47 | 上调Up |
3 | 烟酰胺Nicotinamide | 1.35 | 0 | 1.83 | 上调Up |
4 | 苯乙烯Styrene | 1.79 | 0.001 | 2.36 | 上调Up |
5 | 前列腺素B2 Prostaglandin B2 | 2.07 | 0.001 | 2.63 | 上调Up |
6 | 别胆酸Allocholic acid | 1.69 | 0.001 | 3.12 | 上调Up |
7 | 肾上腺素Epinephrine | 1.62 | 0.001 | 1.54 | 上调Up |
8 | 哌啶酸Pipecolinic Acid | 1.52 | 0.008 | 2.51 | 上调Up |
9 | N-乙酰缬氨酸N-Acetyl valine | 1.32 | 0.010 | 1.54 | 上调Up |
10 | 肉碱Carnitine | 1.28 | 0.013 | 1.89 | 上调Up |
11 | 7-甲基鸟嘌呤7-Methylguanine | 1.62 | 0.014 | 1.55 | 上调Up |
12 | 四氢皮质酮Tetrahydro corticosterone | 2.01 | 0 | 0.26 | 下调Down |
13 | 4-苯基丁酸4-Phenylbutyric acid | 1.92 | 0 | 0.39 | 下调Down |
14 | 皮质酮Corticosterone | 2.15 | 0 | 0.22 | 下调Down |
15 | L-胱硫醚L-Cystathionine | 1.41 | 0 | 0.55 | 下调Down |
16 | L-鸟氨酸L-Ornithine | 1.91 | 0 | 0.61 | 下调Down |
17 | 棕榈油酸Palmitoleic acid | 1.78 | 0.001 | 0.46 | 下调Down |
18 | 磺乙酸Sulfoacetic acid | 1.67 | 0.004 | 0.49 | 下调Down |
19 | 21-脱氧皮质醇21-Deoxycortisol | 1.72 | 0.006 | 0.56 | 下调Down |
20 | 4-吡哆醇酸4-Pyridoxic acid | 1.62 | 0.007 | 0.62 | 下调Down |
21 | 胆甾酮Cholest-4-en-3-one | 1.64 | 0.008 | 0.53 | 下调Down |
22 | 癸酰肉碱Decanoyl carnitine | 1.06 | 0.008 | 0.56 | 下调Down |
23 | 二十碳五烯酸Eicosatetraenoic acid | 1.12 | 0.010 | 0.63 | 下调Down |
24 | 皮质醇Cortisol | 1.4 | 0.011 | 0.45 | 下调Down |
25 | 谷胱甘肽Glutathione | 1.17 | 0.014 | 0.35 | 下调Down |
26 | L-羟脯氨酸L-Hydroxyproline | 1.41 | 0.027 | 0.64 | 下调Down |
表3 正离子模式下试验组和对照组鉴定出的差异代谢物
Table 3 Differential metabolites identified in the CS group and the RSc group under positive ion mode
序号 | 代谢物 | 变量投影重要度 | P值 | 差异倍数 | 趋势 |
---|---|---|---|---|---|
No. | Metabolites | VIP | P-value | Fold change | Trend |
1 | 氨基水杨酸Mesalamine | 2.09 | 0 | 2.2 | 上调Up |
2 | 4-羟基维甲酸4-Hydroxyretinoic Acid | 1.91 | 0 | 2.47 | 上调Up |
3 | 烟酰胺Nicotinamide | 1.35 | 0 | 1.83 | 上调Up |
4 | 苯乙烯Styrene | 1.79 | 0.001 | 2.36 | 上调Up |
5 | 前列腺素B2 Prostaglandin B2 | 2.07 | 0.001 | 2.63 | 上调Up |
6 | 别胆酸Allocholic acid | 1.69 | 0.001 | 3.12 | 上调Up |
7 | 肾上腺素Epinephrine | 1.62 | 0.001 | 1.54 | 上调Up |
8 | 哌啶酸Pipecolinic Acid | 1.52 | 0.008 | 2.51 | 上调Up |
9 | N-乙酰缬氨酸N-Acetyl valine | 1.32 | 0.010 | 1.54 | 上调Up |
10 | 肉碱Carnitine | 1.28 | 0.013 | 1.89 | 上调Up |
11 | 7-甲基鸟嘌呤7-Methylguanine | 1.62 | 0.014 | 1.55 | 上调Up |
12 | 四氢皮质酮Tetrahydro corticosterone | 2.01 | 0 | 0.26 | 下调Down |
13 | 4-苯基丁酸4-Phenylbutyric acid | 1.92 | 0 | 0.39 | 下调Down |
14 | 皮质酮Corticosterone | 2.15 | 0 | 0.22 | 下调Down |
15 | L-胱硫醚L-Cystathionine | 1.41 | 0 | 0.55 | 下调Down |
16 | L-鸟氨酸L-Ornithine | 1.91 | 0 | 0.61 | 下调Down |
17 | 棕榈油酸Palmitoleic acid | 1.78 | 0.001 | 0.46 | 下调Down |
18 | 磺乙酸Sulfoacetic acid | 1.67 | 0.004 | 0.49 | 下调Down |
19 | 21-脱氧皮质醇21-Deoxycortisol | 1.72 | 0.006 | 0.56 | 下调Down |
20 | 4-吡哆醇酸4-Pyridoxic acid | 1.62 | 0.007 | 0.62 | 下调Down |
21 | 胆甾酮Cholest-4-en-3-one | 1.64 | 0.008 | 0.53 | 下调Down |
22 | 癸酰肉碱Decanoyl carnitine | 1.06 | 0.008 | 0.56 | 下调Down |
23 | 二十碳五烯酸Eicosatetraenoic acid | 1.12 | 0.010 | 0.63 | 下调Down |
24 | 皮质醇Cortisol | 1.4 | 0.011 | 0.45 | 下调Down |
25 | 谷胱甘肽Glutathione | 1.17 | 0.014 | 0.35 | 下调Down |
26 | L-羟脯氨酸L-Hydroxyproline | 1.41 | 0.027 | 0.64 | 下调Down |
序号 No. | 代谢物 Metabolites | 变量投影重要度 VIP | P值 P-value | 差异倍数 Fold Change | 趋势 Trend |
---|---|---|---|---|---|
1 | 前列腺素D3 Prostaglandin D3 | 2.58 | 0 | 4.85 | 上调Up |
2 | 2,4-二羟基苯甲酸2,4-Dihydroxybenzoic acid | 1.90 | 0 | 3.76 | 上调Up |
3 | 十四烷二酸Tetradecane dioic acid | 2.22 | 0 | 1.77 | 上调Up |
4 | 胆酸Cholic acid | 2.28 | 0 | 2.66 | 上调Up |
5 | 十二烷二酸Dodecanedioic acid | 2.01 | 0 | 1.77 | 上调Up |
6 | β-羟基丁酸Beta hydroxybutyrate | 1.25 | 0 | 1.68 | 上调Up |
7 | 脱氧胆酸Deoxycholic Acid | 1.83 | 0.003 | 4.15 | 上调Up |
8 | 丁基苯甲酸Butylparaben | 1.87 | 0.005 | 1.79 | 上调Up |
9 | 肌肽Carnosine | 1.59 | 0.008 | 2.38 | 上调Up |
10 | 新喋呤Neopterin | 1.70 | 0.014 | 3.33 | 上调Up |
11 | 2,3-Dinor-TXB2 2,3-Dinor-TXB2 | 1.45 | 0.015 | 1.53 | 上调Up |
12 | 3b,7b-二羟基-5-雄甾烯-17-酮3b,7b-Dihydroxy-5-androsten-17-one | 2.43 | 0 | 0.21 | 下调Down |
13 | 12-羟基二十碳四烯酸12-Hete | 1.56 | 0 | 0.63 | 下调Down |
14 | 2,4,6-三甲基苯酚2,4,6-Trimethylphenol | 2.67 | 0 | 0.31 | 下调Down |
15 | 20-羟基二十碳四烯酸20-Hydroxy-(5Z,8Z,11Z,14Z)-eicosatetraenoic acid | 2.43 | 0 | 0.32 | 下调Down |
表4 负离子模式下试验组和对照组鉴定出的差异代谢物
Table 4 Differential metabolites identified in the CS group and the RSc group under negative ion mode
序号 No. | 代谢物 Metabolites | 变量投影重要度 VIP | P值 P-value | 差异倍数 Fold Change | 趋势 Trend |
---|---|---|---|---|---|
1 | 前列腺素D3 Prostaglandin D3 | 2.58 | 0 | 4.85 | 上调Up |
2 | 2,4-二羟基苯甲酸2,4-Dihydroxybenzoic acid | 1.90 | 0 | 3.76 | 上调Up |
3 | 十四烷二酸Tetradecane dioic acid | 2.22 | 0 | 1.77 | 上调Up |
4 | 胆酸Cholic acid | 2.28 | 0 | 2.66 | 上调Up |
5 | 十二烷二酸Dodecanedioic acid | 2.01 | 0 | 1.77 | 上调Up |
6 | β-羟基丁酸Beta hydroxybutyrate | 1.25 | 0 | 1.68 | 上调Up |
7 | 脱氧胆酸Deoxycholic Acid | 1.83 | 0.003 | 4.15 | 上调Up |
8 | 丁基苯甲酸Butylparaben | 1.87 | 0.005 | 1.79 | 上调Up |
9 | 肌肽Carnosine | 1.59 | 0.008 | 2.38 | 上调Up |
10 | 新喋呤Neopterin | 1.70 | 0.014 | 3.33 | 上调Up |
11 | 2,3-Dinor-TXB2 2,3-Dinor-TXB2 | 1.45 | 0.015 | 1.53 | 上调Up |
12 | 3b,7b-二羟基-5-雄甾烯-17-酮3b,7b-Dihydroxy-5-androsten-17-one | 2.43 | 0 | 0.21 | 下调Down |
13 | 12-羟基二十碳四烯酸12-Hete | 1.56 | 0 | 0.63 | 下调Down |
14 | 2,4,6-三甲基苯酚2,4,6-Trimethylphenol | 2.67 | 0 | 0.31 | 下调Down |
15 | 20-羟基二十碳四烯酸20-Hydroxy-(5Z,8Z,11Z,14Z)-eicosatetraenoic acid | 2.43 | 0 | 0.32 | 下调Down |
[1] | 韩芳玉, 张俊飚, 程琳琳, 等. 气候变化对中国水稻产量及其区域差异性的影响[J]. 生态与农村环境学报, 2019, 35(3): 283-289. |
HAN F Y, ZHANG J B, CHENG L L, et al. Impact of climate change on rice yield and its regional heterogeneity in China[J]. Journal of Ecology and Rural Environment, 2019, 35(3): 283-289. (in Chinese with English abstract) | |
[2] | 丛宏斌, 姚宗路, 赵立欣, 等. 中国农作物秸秆资源分布及其产业体系与利用路径[J]. 农业工程学报, 2019, 35(22): 132-140. |
CONG H B, YAO Z L, ZHAO L X, et al. Distribution of crop straw resources and its industrial system and utilization path in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 132-140. (in Chinese with English abstract) | |
[3] | 李玲玉. 微贮稻草和新鲜玉米秸秆对肉牛生产性能、微生物区系和差异代谢物影响的比较[D]. 南昌: 江西农业大学, 2019. |
LI L Y. Comparison of growth performance, microflora and differential metabolites of beef cattle fed fermented rice straw with beef cattle fed fresh corn stalk[D]. Nanchang: Jiangxi Agricultural University, 2019. (in Chinese with English abstract) | |
[4] | 郑娟善, 丁考仁青, 李新圃, 等. 瘤胃微生物在木质纤维素价值化利用的研究进展[J]. 草业学报, 2021, 30(9): 182-192. |
ZHENG J S, DING K R Q, LI X P, et al. Research progress on rumen microorganisms in the utilization of lignocellulose as an energy resource[J]. Acta Prataculturae Sinica, 2021, 30(9): 182-192. (in Chinese with English abstract) | |
[5] | LIU J J, LIU X P, REN J W, et al. The effects of fermentation and adsorption using lactic acid bacteria culture broth on the feed quality of rice straw[J]. Journal of Integrative Agriculture, 2015, 14(3): 503-513. |
[6] | YIN P Y, XU G W. Metabolomics for tumor marker discovery and identification based on chromatography-mass spectrometry[J]. Expert Review of Molecular Diagnostics, 2013, 13(4): 339-348. |
[7] | NI Y, XIE G X, JIA W. Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery[J]. Journal of Proteome Research, 2014, 13(9): 3857-3870. |
[8] | SHAO F J, YING Y T, TAN X, et al. Metabonomics profiling reveals biochemical pathways associated with pulmonary arterial hypertension in broiler chickens[J]. Journal of Proteome Research, 2018, 17(10): 3445-3453. |
[9] | SUMNER L W, LEI Z T, NIKOLAU B J, et al. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects[J]. Natural Product Reports, 2015, 32(2): 212-229. |
[10] | KENÉZ Á, DÄNICKE S, ROLLE-KAMPCZYK U, et al. A metabolomics approach to characterize phenotypes of metabolic transition from late pregnancy to early lactation in dairy cows[J]. Metabolomics, 2016, 12(11): 1-11. |
[11] | 杜超, 马露, 吴兆海, 等. 外源添加丝兰植物粉末对泌乳期奶牛瘤胃体外发酵特征的影响[J]. 动物营养学报, 2020, 32(12): 5743-5750. |
DU C, MA L, WU Z H, et al. Effects of exogenous addition Yucca plant powder on in vitro rumen fermentation characteristics of lactating dairy cows[J]. Chinese Journal of Animal Nutrition, 2020, 32(12): 5743-5750. (in Chinese with English abstract) | |
[12] | 张子霄, 张舒, 卢娜, 等. 饲用甜菜对泌乳奶牛生产性能、血清生化指标和营养物质表观消化率的影响[J]. 动物营养学报, 2019, 31(10): 4784-4792. |
ZHANG Z X, ZHANG S, LU N, et al. Effects of feed beet on performance, serum biochemical indexes and nutrient apparent digestibility of lactating dairy cows[J]. Chinese Journal of Animal Nutrition, 2019, 31(10): 4784-4792. (in Chinese with English abstract) | |
[13] | DUNKLEY P R, DICKSON P W. Tyrosine hydroxylase phosphorylation in vivo[J]. Journal of Neurochemistry, 2019, 149(6): 706-728. |
[14] | MAGNAN C, LEVIN B E, LUQUET S. Brain lipid sensing and the neural control of energy balance[J]. Molecular and Cellular Endocrinology, 2015, 418: 3-8. |
[15] | VERBERNE A J M, KORIM W S, SABETGHADAM A, et al. Adrenaline: insights into its metabolic roles in hypoglycaemia and diabetes[J]. British Journal of Pharmacology, 2016, 173(9): 1425-1437. |
[16] | ARNER P. Catecholamine-induced lipolysis in obesity[J]. International Journal of Obesity, 1999, 23(1): S10-S13. |
[17] | ENJALBERT F, NICOT M C, BAYOURTHE C, et al. Ketone bodies in milk and blood of dairy cows: relationship between concentrations and utilization for detection of subclinical ketosis[J]. Journal of Dairy Science, 2001, 84(3): 583-589. |
[18] | 曾磊, 王之盛, 康坤, 等. 饲粮能量水平对围产期肉牛营养物质表观消化率和血清生化指标的影响[J]. 动物营养学报, 2020, 32(8): 3732-3741. |
ZENG L, WANG Z S, KANG K, et al. Effects of dietary energy levels on nutrient apparent digestibility and serum biochemical indexes of beef cattle during transition period[J]. Chinese Journal of Animal Nutrition, 2020, 32(8): 3732-3741. (in Chinese with English abstract) | |
[19] | MCART J A A, NYDAM D V, OETZEL G R. Dry period and parturient predictors of early lactation hyperketonemia in dairy cattle[J]. Journal of Dairy Science, 2013, 96(1): 198-209. |
[20] | OSPINA P A, NYDAM D V, STOKOL T, et al. Associations of elevated nonesterified fatty acids and β-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United States[J]. Journal of Dairy Science, 2010, 93(4): 1596-1603. |
[21] | FRITZ I B, MCEWEN B. Effects of carnitine on fatty-acid oxidation by muscle[J]. Science, 1959, 129(3345): 334-335. |
[22] | NAKAMURA M T, YUDELL B E, LOOR J J. Regulation of energy metabolism by long-chain fatty acids[J]. Progress in Lipid Research, 2014, 53: 124-144. |
[23] | ALMANNAI M, ALFADHEL M, EL-HATTAB A W. Carnitine inborn errors of metabolism[J]. Molecules, 2019, 24(18): 3251. |
[24] | LI T G, APTE U. Bile acid metabolism and signaling in cholestasis, inflammation, and cancer[J]. Advances in Pharmacology, 2015, 74: 263-302. |
[25] | SHIFFKA S J, KANE M A, SWAAN P W. Planar bile acids in health and disease[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2017, 1859(11): 2269-2276. |
[26] | CHIANG J Y L. Bile acid metabolism and signaling[J]. Comprehensive Physiology, 2013, 3(3): 1191-1212. |
[27] | BELENKY P, BOGAN K L, BRENNER C. NAD+metabolism in health and disease[J]. Trends in Biochemical Sciences, 2007, 32(1): 12-19. |
[28] | ROMANI M, HOFER D C, KATSYUBA E, et al. Niacin: an old lipid drug in a new NAD+ dress[J]. Journal of Lipid Research, 2019, 60(4): 741-746. |
[29] | DEWANTININGRUM J, HAFIZ A. The role of glutathione peroxidase maternal serum level in late onset of severe preeclampsia[J]. Hypertension in Pregnancy, 2016, 35(4): 483-489. |
[30] | CASTILLO C, HERNANDEZ J, BRAVO A, et al. Oxidative status during late pregnancy and early lactation in dairy cows[J]. The Veterinary Journal, 2005, 169(2): 286-292. |
[31] | REN G, RIMANDO A M, MATHEWS S T. AMPK activation by pterostilbene contributes to suppression of hepatic gluconeogenic gene expression and glucose production in H4IIE cells[J]. Biochemical and Biophysical Research Communications, 2018, 498(3): 640-645. |
[32] | KUO T Y, HARRIS C A, WANG J C. Metabolic functions of glucocorticoid receptor in skeletal muscle[J]. Molecular and Cellular Endocrinology, 2013, 380(1/2): 79-88. |
[33] | VIJAYAN M M, RAPTIS S, SATHIYAA R. Cortisol treatment affects glucocorticoid receptor and glucocorticoid-responsive genes in the liver of rainbow trout[J]. General and Comparative Endocrinology, 2003, 132(2): 256-263. |
[1] | 吕倩, 骆巧, 罗雪, 陈久兵, 马莉, 罗正中, 姚学萍, 余树民, 沈留红, 曹随忠. 基于高通量测序技术分析奶牛场垫沙和橡胶垫卧床中的菌群差异[J]. 浙江农业学报, 2022, 34(7): 1377-1385. |
[2] | 靳晓杰, 张静珍, 杨新笋. 基于广泛靶向代谢组学的武穴野生山药及其零余子代谢物差异分析[J]. 浙江农业学报, 2022, 34(4): 727-735. |
[3] | 杨思瑞, 杨卓, 火苗, 张洁, 张力莉, 李胜利, 徐晓锋. 荷斯坦奶牛不同群体牛舍土壤细菌菌群结构差异分析[J]. 浙江农业学报, 2022, 34(2): 275-283. |
[4] | 沈留红, 程李杰, 尤留超, 雍康, 罗正中, 陈久兵, 骆巧, 余树民, 曹随忠. 热应激与喷淋-风扇系统对不同泌乳阶段奶牛生理和生产性能的影响[J]. 浙江农业学报, 2021, 33(9): 1602-1610. |
[5] | 赵洪喜, 刘继兵. 宁夏部分地区奶牛球虫感染情况调查与遗传进化分析[J]. 浙江农业学报, 2021, 33(8): 1379-1384. |
[6] | 沈留红, 钱柏霖, 尤留超, 张钺, 莘余, 吕尚揆, 肖劲邦, 余树民, 苏柘僮, 董可, 杨世林, 冯育林, 曹随忠. 白头翁皂苷B4对临床型奶牛乳房炎疗效和血清炎性因子、免疫因子的影响[J]. 浙江农业学报, 2021, 33(7): 1184-1191. |
[7] | 王贤, 刘放, 魏小红, 朱晓林, 王宝强. 不同种质番茄材料抗番茄黄化曲叶病毒病特性研究[J]. 浙江农业学报, 2021, 33(11): 2085-2097. |
[8] | 吴佳, 陈朗, 姜涛, 黄国明, 李倬, 李耀东, 张丽, 刘丽霞. 奶牛CSF3基因遗传多态性筛查及其生物信息学分析[J]. 浙江农业学报, 2020, 32(6): 986-993. |
[9] | 李秋玲, 齐颖, 王琛, 张一名, 王新妤, 尚校兰, 贾永红, 李美茹, 储明星. 热应激对中国荷斯坦牛乳腺组织基因表达及信号通路的影响[J]. 浙江农业学报, 2020, 32(5): 770-778. |
[10] | 吉小凤, 吕文涛, 汪建妹, 廖琳慧, 徐杰, 钱鸣蓉. 超高效液相色谱-串联质谱法测定鲜鸡蛋中氟虫腈及其代谢物残留[J]. 浙江农业学报, 2020, 32(10): 1849-1854. |
[11] | 曾学琴, 柳陈坚, 杨雪, 李晓然. 高通量测序法检测奶牛乳房炎关联微生物群落结构及多样性[J]. 浙江农业学报, 2019, 31(9): 1437-1445. |
[12] | 朱颍琨, 肖劲邦, 钱柏霖, 姜思汛, 尤留超, 张钺, 刘红, 马莉, 曹随忠, 余树民, 沈留红. 泌乳初期奶牛相关脂肪因子及生理生化指标与脂肪肝的相关性[J]. 浙江农业学报, 2019, 31(5): 722-729. |
[13] | 白东东, 李新圃, 杨峰, 罗金印, 王旭荣, 李宏胜. 地肤通乳散治疗奶牛乳房炎临床疗效及作用靶点预测[J]. 浙江农业学报, 2019, 31(5): 730-736. |
[14] | 苟丽琼, 姚恒, 王戈, 黄如成, 段均华, 肖玖金, 张健. 稻草不同还田方式对土壤动物群落结构的影响[J]. 浙江农业学报, 2019, 31(3): 450-457. |
[15] | 徐晓锋, 郭成. 淀粉诱导奶牛乳脂下降后奶牛瘤胃细菌菌群变化[J]. 浙江农业学报, 2019, 31(10): 1591-1598. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||