[1] |
STRADER L, WEIJERS D, WAGNER D. Plant transcription factors: being in the right place with the right company[J]. Current Opinion in Plant Biology, 2022, 65: 102136.
|
[2] |
LEHTI-SHIU M D, PANCHY N, WANG P P, et al. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families[J]. Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 2017, 1860(1): 3-20.
|
[3] |
BAILLO E H, KIMOTHO R N, ZHANG Z B, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement[J]. Genes, 2019, 10(10): 771.
|
[4] |
ZHANG L L, FANG W M, CHEN F D, et al. The role of transcription factors in the regulation of plant shoot branching[J]. Plants, 2022, 11(15): 1997.
|
[5] |
VISWANATH K K, KUO S Y, TU C W, et al. The role of plant transcription factors in the fight against plant viruses[J]. International Journal of Molecular Sciences, 2023, 24(9): 8433.
|
[6] |
RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5): 247-258.
|
[7] |
PHUKAN U J, JEENA G S, SHUKLA R K. WRKY transcription factors: molecular regulation and stress responses in plants[J]. Frontiers in Plant Science, 2016, 7: 760.
|
[8] |
BAKSHI M, OELMÜLLER R. WRKY transcription factor: jack of many trades in plants[J]. Plant Signaling & Behavior, 2014, 9(2): e27700.
|
[9] |
CHEN F, HU Y, VANNOZZI A, et al. The WRKY transcription factor family in model plants and crops[J]. Critical Reviews in Plant Sciences, 2017, 36(5/6): 311-335.
|
[10] |
YUAN G F, SUN B, YUAN J, et al. Effects of different cooking methods on health-promoting compounds of broccoli[J]. Journal of Zhejiang University SCIENCE B, 2009, 10(8): 580-588.
|
[11] |
NANDINI D B, RAO R S, DEEPAK B S, et al. Sulforaphane in broccoli: the green chemoprevention!! role in cancer prevention and therapy[J]. Journal of Oral and Maxillofacial Pathology, 2020, 24(2): 405.
|
[12] |
AKTARUZZAMAN M, AFROZ T, HONG S J, et al. Identification of Botrytis cinerea, the cause of post-harvest gray mold on broccoli in Korea[J]. Research in Plant Disease, 2017, 23(4): 372-378.
|
[13] |
CASEYS C, SHI G J, SOLTIS N, et al. Quantitative interactions: the disease outcome of Botrytis cinerea across the plant kingdom[J]. G3, 2021, 11(8): jkab175.
|
[14] |
FILLINGER S, ELAD Y. Botrytis: the fungus, the pathogen and its management in agricultural systems[M]. Cham: Springer International Publishing, 2016.
|
[15] |
LEE M B, HAN H, LEE S. The role of WRKY transcription factors, FaWRKY29 and FaWRKY64, for regulating Botrytis fruit rot resistance in strawberry (Fragaria×ananassa Duch.)[J]. BMC Plant Biology, 2023, 23(1): 420.
|
[16] |
FU Y Y, LI J, WU H, et al. Analyses of Botrytis cinerea-responsive LrWRKY genes from Lilium regale reveal distinct roles of two LrWRKY transcription factors in mediating responses to B. cinerea[J]. Plant Cell Reports, 2022, 41(4): 995-1012.
|
[17] |
LIU X T, LI D D, ZHANG S Y, et al. Genome-wide characterization of the rose (Rosa chinensis) WRKY family and role of RcWRKY 41 in gray mold resistance[J]. BMC Plant Biology, 2019, 19(1): 522.
|
[18] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
|
[19] |
JIANG M, HE C M, MIAO L X, et al. Overexpression of a broccoli defensin gene BoDFN enhances downy mildew resistance[J]. Journal of Integrative Agriculture, 2012, 11(7): 1137-1144.
|
[20] |
EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5): 199-206.
|
[21] |
XIE Z, ZHANG Z L, ZOU X L, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiology, 2005, 137(1): 176-189.
|
[22] |
ZHANG M, CHEN Y, NIE L, et al. Transcriptome-wide identification and screening of WRKY factors involved in the regulation of taxol biosynthesis in Taxus chinensis[J]. Scientific Reports, 2018, 8: 5197.
|
[23] |
JIANG Y J, YU D Q. The WRKY57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance[J]. Plant Physiology, 2016, 171(4): 2771-2782.
|
[24] |
CHEN L G, ZHANG L P, XIANG S Y, et al. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens[J]. Journal of Experimental Botany, 2021, 72(4): 1473-1489.
|
[25] |
LIU B, HONG Y B, ZHANG Y F, et al. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress[J]. Plant Science, 2014, 227: 145-156.
|
[26] |
JIA S Z, WANG Y H, ZHANG G, et al. Strawberry FaWRKY25 transcription factor negatively regulated the resistance of strawberry fruits to Botrytis cinerea[J]. Genes, 2021, 12(1): 56.
|
[27] |
WANG X H, GUO R R, TU M X, et al. Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinerea[J]. Frontiers in Plant Science, 2017, 8: 97.
|
[28] |
WANG X H, TU M X, WANG D J, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation[J]. Plant Biotechnology Journal, 2018, 16(4): 844-855.
|
[29] |
DUAN Y J, JIANG Y Z, YE S L, et al. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana[J]. Plant Cell Reports, 2015, 34(5): 831-841.
|
[30] |
JIANG Y Z, GUO L, LIU R, et al. Overexpression of poplar PtrWRKY89 in transgenic Arabidopsis leads to a reduction of disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling[J]. PLoS One, 2016, 11(3): e0149137.
|
[31] |
毕蒙蒙, 刘迪, 高歌, 等. CmWRKY15-1通过水杨酸信号通路调控菊花白色锈病抗性[J]. 中国农业科学, 2021, 54(3): 619-628.
|
|
BI M M, LIU D, GAO G, et al. Cm WRKY15-1 regulates resistance of Chrysanthemum white rust through salicylic acid signaling pathway[J]. Scientia Agricultura Sinica, 2021, 54(3): 619-628. (in Chinese with English abstract)
|