浙江农业学报 ›› 2024, Vol. 36 ›› Issue (9): 2031-2041.DOI: 10.3969/j.issn.1004-1524.20231003
欧晋稳1,2(), 张古文2, 冯志娟2, 王斌2, 卜远鹏2, 徐钰2, 茹磊1, 刘娜1,2,*(
), 龚亚明2
收稿日期:
2023-08-22
出版日期:
2024-09-25
发布日期:
2024-09-30
作者简介:
刘娜,E-mail:ln200811@163.com通讯作者:
刘娜,E-mail:基金资助:
OU Jinwen1,2(), ZHANG Guwen2, FENG Zhijuan2, WANG Bin2, BU Yuanpeng2, XU Yu2, RU Lei1, LIU Na1,2,*(
), GONG Yaming2
Received:
2023-08-22
Online:
2024-09-25
Published:
2024-09-30
摘要:
海藻糖在植物代谢、生长发育和抗逆性中起着重要作用。海藻糖-6-磷酸磷酸酶(TPP)基因对海藻糖的生物合成至关重要。大豆是重要豆类作物,种子含有丰富的蛋白质和油脂,其TPP基因家族少有报道。为分析TPP基因在大豆中的结构和功能,利用生物信息学方法在大豆全基因组中筛选得到15个GmTPP基因。系统发育分析表明,这15个GmTPP可分为3个亚家族,每个GmTPP含有9~11个内含子,同一亚家族的GmTPP基因的内含子数目相同。顺式作用元件分析表明,GmTPP基因参与植物激素和环境胁迫反应。此外,还利用转录组数据研究这些GmTPP在不同组织中的表达模式以及对不同的非生物胁迫的表达特征。结果显示,GmTPP在大豆各个组织器官中均有特定的表达模式,在盐胁迫、干旱胁迫处理下表达不同。该研究不仅为揭示GmTPP基因家族在大豆海藻糖调控中的作用奠定了基础,也为利用TPP基因家族提高大豆抗逆性提供一定的参考价值。
中图分类号:
欧晋稳, 张古文, 冯志娟, 王斌, 卜远鹏, 徐钰, 茹磊, 刘娜, 龚亚明. 大豆海藻糖-6-磷酸磷酸酶基因GmTPP的鉴定及其在生长发育和非生物胁迫响应中的表达分析[J]. 浙江农业学报, 2024, 36(9): 2031-2041.
OU Jinwen, ZHANG Guwen, FENG Zhijuan, WANG Bin, BU Yuanpeng, XU Yu, RU Lei, LIU Na, GONG Yaming. Identification of soybean trehalose-6-phosphate phosphatase gene GmTPP and its expression analysis in growth and abiotic stress response[J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2031-2041.
基因 Gene | 基因序列号 Gene ID number | 染色体 Chromosome | 内含子数目 Number of introns | 氨基酸数 Number of amino acids | 分子量 Molecular mass/ku | 等电点 Isoelectric point(pI) | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
GmTPP1 | Glyma.04G103600 | Gm04 | 9 | 371 | 41.438 67 | 9.35 | 叶绿体Chloroplast |
GmTPP2 | Glyma.04G119700 | Gm04 | 11 | 340 | 37.565 88 | 5.52 | 叶绿体Chloroplast |
GmTPP3 | Glyma.04G237900 | Gm04 | 9 | 367 | 41.772 01 | 8.86 | 叶绿体Chloroplast |
GmTPP4 | Glyma.05G179800 | Gm05 | 10 | 277 | 32.010 92 | 8.89 | 过氧化物酶体Peroxisomal |
GmTPP5 | Glyma.06G104800 | Gm06 | 9 | 370 | 41.444 76 | 9.46 | 叶绿体Chloroplast |
GmTPP6 | Glyma.06G126300 | Gm06 | 10 | 367 | 42.046 28 | 9.09 | 叶绿体Chloroplast |
GmTPP7 | Glyma.08G137500 | Gm08 | 10 | 290 | 33.448 61 | 8.83 | 过氧化物酶体Peroxisomal |
GmTPP8 | Glyma.09G231400 | Gm09 | 11 | 389 | 43.419 69 | 8.54 | 细胞质Cytoplasmic |
GmTPP9 | Glyma.11G239300 | Gm11 | 10 | 363 | 41.038 08 | 9.31 | 叶绿体Chloroplast |
GmTPP10 | Glyma.12G005200 | Gm12 | 11 | 389 | 43.276 45 | 7.66 | 叶绿体Chloroplast |
GmTPP11 | Glyma.13G088300 | Gm13 | 9 | 372 | 41.824 2 | 9.29 | 叶绿体Chloroplast |
GmTPP12 | Glyma.14G171700 | Gm14 | 9 | 379 | 42.540 85 | 9.47 | 叶绿体Chloroplast |
GmTPP13 | Glyma.16G025600 | Gm16 | 9 | 203 | 23.115 63 | 6.53 | 细胞质Cytoplasmic |
GmTPP14 | Glyma.17G138700 | Gm17 | 11 | 362 | 41.039 38 | 5.79 | 细胞核Nuclear |
GmTPP15 | Glyma.18G018100 | Gm18 | 11 | 365 | 41.200 30 | 9.31 | 叶绿体Chloroplast |
表1 大豆GmTPP基因家族成员基本信息
Table 1 Basic information of GmTPP family genes in soybean
基因 Gene | 基因序列号 Gene ID number | 染色体 Chromosome | 内含子数目 Number of introns | 氨基酸数 Number of amino acids | 分子量 Molecular mass/ku | 等电点 Isoelectric point(pI) | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
GmTPP1 | Glyma.04G103600 | Gm04 | 9 | 371 | 41.438 67 | 9.35 | 叶绿体Chloroplast |
GmTPP2 | Glyma.04G119700 | Gm04 | 11 | 340 | 37.565 88 | 5.52 | 叶绿体Chloroplast |
GmTPP3 | Glyma.04G237900 | Gm04 | 9 | 367 | 41.772 01 | 8.86 | 叶绿体Chloroplast |
GmTPP4 | Glyma.05G179800 | Gm05 | 10 | 277 | 32.010 92 | 8.89 | 过氧化物酶体Peroxisomal |
GmTPP5 | Glyma.06G104800 | Gm06 | 9 | 370 | 41.444 76 | 9.46 | 叶绿体Chloroplast |
GmTPP6 | Glyma.06G126300 | Gm06 | 10 | 367 | 42.046 28 | 9.09 | 叶绿体Chloroplast |
GmTPP7 | Glyma.08G137500 | Gm08 | 10 | 290 | 33.448 61 | 8.83 | 过氧化物酶体Peroxisomal |
GmTPP8 | Glyma.09G231400 | Gm09 | 11 | 389 | 43.419 69 | 8.54 | 细胞质Cytoplasmic |
GmTPP9 | Glyma.11G239300 | Gm11 | 10 | 363 | 41.038 08 | 9.31 | 叶绿体Chloroplast |
GmTPP10 | Glyma.12G005200 | Gm12 | 11 | 389 | 43.276 45 | 7.66 | 叶绿体Chloroplast |
GmTPP11 | Glyma.13G088300 | Gm13 | 9 | 372 | 41.824 2 | 9.29 | 叶绿体Chloroplast |
GmTPP12 | Glyma.14G171700 | Gm14 | 9 | 379 | 42.540 85 | 9.47 | 叶绿体Chloroplast |
GmTPP13 | Glyma.16G025600 | Gm16 | 9 | 203 | 23.115 63 | 6.53 | 细胞质Cytoplasmic |
GmTPP14 | Glyma.17G138700 | Gm17 | 11 | 362 | 41.039 38 | 5.79 | 细胞核Nuclear |
GmTPP15 | Glyma.18G018100 | Gm18 | 11 | 365 | 41.200 30 | 9.31 | 叶绿体Chloroplast |
[1] |
KURODA Y, KAGA A, TOMOOKA N, et al. Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation[J]. Molecular Ecology, 2006, 15(4): 959-974.
DOI PMID |
[2] | LAM H M, XU X, LIU X, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection[J]. Nature Genetics, 2010, 42(12): 1053-1059. |
[3] | ZHANG M, LIU S L, WANG Z, et al. Progress in soybean functional genomics over the past decade[J]. Plant Biotechnology Journal, 2022, 20(2): 256-282. |
[4] |
CHAUDHARY J, PATIL G B, SONAH H, et al. Expanding omics resources for improvement of soybean seed composition traits[J]. Frontiers in Plant Science, 2015, 6: 1021.
DOI PMID |
[5] | 蒋炳军, 岳岩磊, 王彩洁, 等. 大豆分子育种研究进展[J]. 大豆科学, 2012, 31(4): 662-667. |
JIANG B J, YUE Y L, WANG C J, et al. Recent advances in molecular breeding of soybean[J]. Soybean Science, 2012, 31(4): 662-667. (in Chinese with English abstract) | |
[6] | 李金娜, 李海英. 糖料作物抗氧化酶基因应答非生物胁迫的研究进展[J]. 中国糖料, 2021, 43(4): 42-47. |
LI J N, LI H Y. Advance on antioxidant enzyme system’s genes response to abiotic stress in sugar crops[J]. Sugar Crops of China, 2021, 43(4): 42-47. (in Chinese with English abstract) | |
[7] | 陈柯岐, 邓星光, 林宏辉. 植物响应非生物胁迫的分子机制[J]. 生物学杂志, 2021, 38(6): 1-8. |
CHEN K Q, DENG X G, LIN H H. Molecular mechanisms of plant in response to abiotic stress[J]. Journal of Biology, 2021, 38(6): 1-8. (in Chinese with English abstract) | |
[8] | LUNN J E, DELORGE I, FIGUEROA C M, et al. Trehalose metabolism in plants[J]. Plant Journal, 2014, 79(4): 544-567. |
[9] |
DELORGE I, JANIAK M, CARPENTIER S, et al. Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants[J]. Frontiers in Plant Science, 2014, 5: 147.
DOI PMID |
[10] | YUAN G P, LIU J P, AN G L, et al. Genome-wide identification and characterization of the trehalose-6-phosphate synthetase (TPS) gene family in watermelon (Citrullus lanatus) and their transcriptional responses to salt stress[J]. International Journal of Molecular Sciences, 2021, 23(1): 276. |
[11] | RENARD-MERLIER D, RANDOUX B, NOWAK E, et al. Iodus 40, salicylic acid, heptanoyl salicylic acid and trehalose exhibit different efficacies and defence targets during a wheat/powdery mildew interaction[J]. Phytochemistry, 2007, 68(8): 1156-1164. |
[12] | WANG X L, DU Y, YU D Q. Trehalose phosphate synthase 5-dependent trehalose metabolism modulates basal defense responses in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology, 2019, 61(4): 509-527. |
[13] | VANDESTEENE L, LÓPEZ-GALVIS L, VANNESTE K, et al. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis[J]. Plant Physiology, 2012, 160(2): 884-896. |
[14] | BAENA-GONZÁLEZ E, LUNN J E. SnRK1 and trehalose 6-phosphate-two ancient pathways converge to regulate plant metabolism and growth[J]. Current Opinion in Plant Biology, 2020, 55: 52-59. |
[15] |
ZVINAVASHE A T, LIM E, SUN H, et al. A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(51): 25555-25561.
DOI PMID |
[16] | ACOSTA-PÉREZ P, CAMACHO-ZAMORA B D, ESPINOZA-SÁNCHEZ E A, et al. Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes and analysis of its differential expression in maize (Zea mays) seedlings under drought stress[J]. Plants, 2020, 9(3): 315. |
[17] | KATAYA A R A, ELSHOBAKY A, HEIDARI B, et al. Multi-targeted trehalose-6-phosphate phosphatase I harbors a novel peroxisomal targeting signal 1 and is essential for flowering and development[J]. Planta, 2020, 251(5): 98. |
[18] |
WINGLER A, DELATTE T L, O’HARA L E, et al. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability[J]. Plant Physiology, 2012, 158(3): 1241-1251.
DOI PMID |
[19] |
AVONCE N, MENDOZA-VARGAS A, MORETT E, et al. Insights on the evolution of trehalose biosynthesis[J]. BMC Evolutionary Biology, 2006, 6: 109.
PMID |
[20] | YANG H L, LIU Y J, WANG C L, et al. Molecular evolution of trehalose-6-phosphate synthase (TPS) gene family in Populus, Arabidopsis and rice[J]. PLoS One, 2012, 7(8): e42438. |
[21] |
谢翎, 汪章勋, 黄勃. 大豆TPS基因家族全基因组鉴定、分类与表达分析[J]. 中国油料作物学报, 2014, 36(2): 160-167.
DOI |
XIE L, WANG Z X, HUANG B. Genome-wide identification classification and expression of TPS family genes in soybean[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(2): 160-167. (in Chinese with English abstract) | |
[22] | LIN Q F, YANG J, WANG Q L, et al. Overexpression of the trehalose-6-phosphate phosphatase family gene AtTPPF improves the drought tolerance of Arabidopsis thaliana[J]. BMC Plant Biology, 2019, 19(1): 381. |
[23] | KRASENSKY J, BROYART C, RABANAL F A, et al. The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance[J]. Antioxidants & Redox Signaling, 2014, 21(9): 1289-1304. |
[24] | VAN HOUTTE H, LÓPEZ-GALVIS L, VANDESTEENE L, et al. Redundant and non-redundant roles of the trehalose-6-phosphate phosphatases in leaf growth, root hair specification and energy-responses in Arabidopsis[J]. Plant Signaling & Behavior, 2013, 8(3): e23209. |
[25] |
CLAEYS H, Ⅵ S L, XU X S, et al. Control of meristem determinacy by trehalose 6-phosphate phosphatases is uncoupled from enzymatic activity[J]. Nature Plants, 2019, 5(4): 352-357.
DOI PMID |
[26] | SHIMA S H, MATSUI H, TAHARA S, et al. Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes[J]. The FEBS Journal, 2007, 274(5): 1192-1201. |
[27] | DU L Y, LI S M, DING L, et al. Genome-wide analysis of trehalose-6-phosphate phosphatases (TPP) gene family in wheat indicates their roles in plant development and stress response[J]. BMC Plant Biology, 2022, 22(1): 120. |
[28] | SATOH-NAGASAWA N, NAGASAWA N, MALCOMBER S, et al. A trehalose metabolic enzyme controls inflorescence architecture in maize[J]. Nature, 2006, 441(7090): 227-230. |
[29] |
FICHTNER F, LUNN J E. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development[J]. Annual Review of Plant Biology, 2021, 72: 737-760.
DOI PMID |
[30] |
FIGUEROA C M, FEIL R, ISHIHARA H, et al. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability[J]. The Plant Journal, 2016, 85(3): 410-423.
DOI PMID |
[31] | 张雯, 王宇斐, 郭延平. 高等植物6-磷酸海藻糖信号调控研究进展[J]. 植物生理学报, 2016, 52(4): 394-400. |
ZHANG W, WANG Y F, GUO Y P. Review on crosstalk regulation involving in trehalose-6-phosphate signal in plant[J]. Plant Physiology Journal, 2016, 52(4): 394-400. (in Chinese with English abstract) | |
[32] |
KARIM S, ARONSSON H, ERICSON H, et al. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose[J]. Plant Molecular Biology, 2007, 64(4): 371-386.
DOI PMID |
[33] | GE L F, CHAO D Y, SHI M, et al. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes[J]. Planta, 2008, 228(1): 191-201. |
[34] | SCHMID M, DAVISON T S, HENZ S R, et al. A gene expression map of Arabidopsis thaliana development[J]. Nature Genetics, 2005, 37(5): 501-506. |
[35] | LI H W, ZANG B S, DENG X W, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta, 2011, 234(5): 1007-1018. |
[36] | MU M, LU X K, WANG J J, et al. Genome-wide Identification and analysis of the stress-resistance function of the TPS(Trehalose-6-Phosphate Synthase) gene family in cotton[J]. BMC Genetics, 2016, 17: 54. |
[37] |
田礼欣, 曲丹阳, 毕文双, 等. 海藻糖对盐胁迫下玉米幼苗生长及生理特性的影响[J]. 草业学报, 2017, 26(8): 131-138.
DOI |
TIAN L X, QU D Y, BI W S, et al. Trehalose alleviates the negative effects of salinity on the growth and physiological characteristics of maize seedlings[J]. Acta Prataculturae Sinica, 2017, 26(8): 131-138. (in Chinese with English abstract) | |
[38] | 刘旋, 佟昊阳, 田礼欣, 等. 外源海藻糖对低温胁迫下玉米幼苗根系生长及生理特性的影响[J]. 中国农业气象, 2018, 39(8): 538-546. |
LIU X, TONG H Y, TIAN L X, et al. Effects of exogenous trehalose on growth and physiological characteristics of maize seedling roots under chilling stress[J]. Chinese Journal of Agrometeorology, 2018, 39(8): 538-546. (in Chinese with English abstract) | |
[39] | BLÄSING O E, GIBON Y, GÜNTHER M, et al. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis[J]. The Plant Cell, 2005, 17(12): 3257-3281. |
[40] |
NUCCIO M L, WU J, MOWERS R, et al. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions[J]. Nature Biotechnology, 2015, 33(8): 862-869.
PMID |
[41] | GAO Y H, YANG X Y, YANG X, et al. Characterization and expression pattern of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase gene families in Populus[J]. International Journal of Biological Macromolecules, 2021, 187: 9-23. |
[1] | 孙培媛, 冉彬, 王佳蕊, 李洪有. 苦荞FtDELLA基因的克隆与表达分析[J]. 浙江农业学报, 2024, 36(8): 1709-1718. |
[2] | 唐红, 关文志, 许晓军, 牛宝龙, 楼宝, 沈小明, 顾志敏. 三角鲂foxl2基因克隆和时空表达特征及EE2对其表达的影响[J]. 浙江农业学报, 2024, 36(8): 1789-1799. |
[3] | 袁晓, 蒋园园, 朱云娜, 曲姗姗, 王玉昆, 原远, 王斌. JAZ家族基因在采后黄瓜低温贮藏条件下的表达分析[J]. 浙江农业学报, 2024, 36(8): 1820-1831. |
[4] | 寿伟松, 王铎, 沈佳, 许昕阳, 张跃建, 何艳军. 西瓜蔗糖转运蛋白SUT家族的鉴定及其在果实发育和逆境响应中的表达分析[J]. 浙江农业学报, 2024, 36(1): 94-102. |
[5] | 孙秀娟, 徐伟慧, 王志刚. 大豆根瘤内生细菌的分离鉴定及其对大豆植株的促生效应[J]. 浙江农业学报, 2023, 35(7): 1532-1541. |
[6] | 卜远鹏, 刘娜, 张古文, 冯志娟, 王斌, 龚亚明, 许林英. 菜用大豆种质资源的农艺性状多样性评价及核心种质与食味品质评价体系的构建[J]. 浙江农业学报, 2023, 35(6): 1307-1314. |
[7] | 张新业, 李文静, 朱姝, 孙艳香, 王聪艳, 闫训友, 周志国. 三种伞形科蔬菜作物棕榈酰基转移酶基因家族的鉴定与分析[J]. 浙江农业学报, 2023, 35(6): 1315-1327. |
[8] | 杨松花, 石贵阳, 王晶琴, 陈竹. 低磷胁迫下大豆根系分泌物对土壤中难溶性磷的影响[J]. 浙江农业学报, 2023, 35(6): 1396-1406. |
[9] | 梁妃爽, 梁华芳, 黄佳宇, 王潘妹, 温崇庆. RNA干扰PhCatC1/2基因对波纹龙虾相关免疫基因表达的影响[J]. 浙江农业学报, 2023, 35(5): 1037-1047. |
[10] | 姚彦林, 马骊, 刘丽君, 蒲媛媛, 李学才, 王旺田, 方彦, 孙万仓, 武军艳. 白菜型油菜开花调控基因BrFT的生物信息学特性和表达分析[J]. 浙江农业学报, 2023, 35(5): 992-1000. |
[11] | 檀舒霞, 赵桃弟, 杨豪, 宁可君, 刘丽, 何庆元, 黄守程, 舒英杰. 遮阴对10个菜用大豆品种农艺性状、产量和硝态氮代谢的影响[J]. 浙江农业学报, 2023, 35(4): 729-735. |
[12] | 燕存尧, 贾凯, 闫会转, 高杰. 芜菁BrrLOX7基因克隆、表达及生物信息学分析[J]. 浙江农业学报, 2023, 35(4): 831-840. |
[13] | 张梦, 佘宝, 杨玉莹, 黄林生, 朱梦琦. 基于无人机RGB影像的大豆种植区提取方法研究[J]. 浙江农业学报, 2023, 35(4): 952-961. |
[14] | 刘悦, 徐伟慧, 王志刚. 大豆根际促生菌的筛选鉴定与促生效应[J]. 浙江农业学报, 2023, 35(12): 2775-2784. |
[15] | 谭云峰, 陈霖, 胡森, 王键, 陈治帆, 吕小荣. 纵轴流柔性弯齿式大豆脱粒装置的设计与试验[J]. 浙江农业学报, 2023, 35(12): 2954-2965. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||