浙江农业学报 ›› 2023, Vol. 35 ›› Issue (4): 952-961.DOI: 10.3969/j.issn.1004-1524.2023.04.22
张梦1(), 佘宝1,2,*(
), 杨玉莹2, 黄林生2, 朱梦琦1
收稿日期:
2022-05-22
出版日期:
2023-04-25
发布日期:
2023-05-05
通讯作者:
*佘宝,E-mail:shebao518@aust.edu.cn
作者简介:
张梦(1995—),男,安徽蚌埠人,硕士研究生,研究方向为摄影测量与遥感。E-mail:2295473019@qq.com
基金资助:
ZHANG Meng1(), SHE Bao1,2,*(
), YANG Yuying2, HUANG Linsheng2, ZHU Mengqi1
Received:
2022-05-22
Online:
2023-04-25
Published:
2023-05-05
摘要:
针对皖北大豆主产区——阜阳市太和县境内的典型破碎农田环境,基于无人机RGB影像与多种机器学习算法构建大豆遥感识别模型,据此实现种植区的精细制图。除了R、G、B波段的相对反射率外,还选取了3个HLS色彩空间分量、9个可见光植被指数、6个纹理特征和1个几何特征共22个候选特征变量扩大RGB影像的信息量。采用与分类器相耦合的特征选择方法筛选出针对4种算法——随机森林(RF)、支持向量机(SVM)、极端梯度提升(XGBoost)和BP神经网络(BPNN)的特征子集,并基于最优特征子集和相应的算法构建监督分类模型进行大豆分布区的提取制图,并对比效果差异。结果表明,在4种算法下,基于优选特征子集构建的监督分类模型的提取效果全部优于基于原始RGB波段的提取效果,其中,RF算法结合优选特征的表现最佳,总体精度为93.96%,Kappa系数达到0.87。总的来看,RF算法结合特征优选方法在无人机大豆遥感识别中具有较大的应用潜力,通过特征筛选可在较高的分类精度与较少的数据量之间取得平衡。
中图分类号:
张梦, 佘宝, 杨玉莹, 黄林生, 朱梦琦. 基于无人机RGB影像的大豆种植区提取方法研究[J]. 浙江农业学报, 2023, 35(4): 952-961.
ZHANG Meng, SHE Bao, YANG Yuying, HUANG Linsheng, ZHU Mengqi. Study on extraction method of soybean planting areas based on unmanned aerial vehicle RGB image[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 952-961.
图2 不同方法下窗口尺寸与分类精度的关系 红色五角星标记的是最优窗口尺寸。
Fig.2 Relationships between window size and classification accuracy under different algorithms The red stars represent the optimum window size.
图3 不同机器学习算法下分类精度与特征维度之间的关系 红点代表最大精度所对应的特征维度。
Fig.3 Relationship between classification accuracy and feature dimension under different algorithms The red points represent the specific dimension corresponding to the maximum accuracy.
算法 Algorithm | 优选特征变量 Optimum feature-subset |
---|---|
RF | r, BRRI, ExR, h, NGRDI, DSM, Correlation, ASM, Entropy |
SVM | ExR, BRRI, Correlation, DSM, ASM, Entropy, GBRI |
XGBoost | ExR, r, NGRDI, BRRI, h, CIVE, VDVI, DSM, ASM |
BPNN | NGRDI, r, ExR, ExG, ASM, DSM |
表1 不同算法的优选特征变量子集
Table 1 Optimum feature-subsets under different algorithms
算法 Algorithm | 优选特征变量 Optimum feature-subset |
---|---|
RF | r, BRRI, ExR, h, NGRDI, DSM, Correlation, ASM, Entropy |
SVM | ExR, BRRI, Correlation, DSM, ASM, Entropy, GBRI |
XGBoost | ExR, r, NGRDI, BRRI, h, CIVE, VDVI, DSM, ASM |
BPNN | NGRDI, r, ExR, ExG, ASM, DSM |
算法 Algorithm | 输入数据 Input data | P/% | UA/% | OA/% | Kappa系数 Kappa coefficient |
---|---|---|---|---|---|
RF | RGB影像RGB image | 87.01 | 94.54 | 91.53 | 0.82 |
优选特征Optimum features | 90.96 | 96.27 | 93.96 | 0.87 | |
SVM | RGB影像RGB image | 79.37 | 95.89 | 88.46 | 0.76 |
优选特征Optimum features | 92.13 | 95.09 | 93.93 | 0.87 | |
XGBoost | RGB影像RGB image | 87.13 | 94.07 | 91.18 | 0.82 |
优选特征Optimum features | 90.82 | 96.16 | 93.84 | 0.87 | |
BPNN | RGB影像RGB image | 92.21 | 88.85 | 90.78 | 0.81 |
优选特征Optimum features | 89.32 | 94.14 | 92.19 | 0.84 |
表2 不同算法下基于RGB特征和优选特征的大豆提取精度
Table 2 Soybean extraction accuracy based on RGB image and optimum features under different algorithms
算法 Algorithm | 输入数据 Input data | P/% | UA/% | OA/% | Kappa系数 Kappa coefficient |
---|---|---|---|---|---|
RF | RGB影像RGB image | 87.01 | 94.54 | 91.53 | 0.82 |
优选特征Optimum features | 90.96 | 96.27 | 93.96 | 0.87 | |
SVM | RGB影像RGB image | 79.37 | 95.89 | 88.46 | 0.76 |
优选特征Optimum features | 92.13 | 95.09 | 93.93 | 0.87 | |
XGBoost | RGB影像RGB image | 87.13 | 94.07 | 91.18 | 0.82 |
优选特征Optimum features | 90.82 | 96.16 | 93.84 | 0.87 | |
BPNN | RGB影像RGB image | 92.21 | 88.85 | 90.78 | 0.81 |
优选特征Optimum features | 89.32 | 94.14 | 92.19 | 0.84 |
[1] | 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5): 748-767. |
CHEN Z X, REN J Q, TANG H J, et al. Progress and perspectives on agricultural remote sensing research and applications in China[J]. Journal of Remote Sensing, 2016, 20(5): 748-767. (in Chinese with English abstract) | |
[2] |
BERNI J A J, ZARCO-TEJADA P J, SUAREZ L, et al. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 722-738.
DOI URL |
[3] |
YU N, LI L J, SCHMITZ N, et al. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform[J]. Remote Sensing of Environment, 2016, 187: 91-101.
DOI URL |
[4] | 汪沛, 罗锡文, 周志艳, 等. 基于微小型无人机的遥感信息获取关键技术综述[J]. 农业工程学报, 2014, 30(18): 1-12. |
WANG P, LUO X W, ZHOU Z Y, et al. Key technology for remote sensing information acquisition based on micro UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 1-12. (in Chinese with English abstract) | |
[5] | 安谈洲, 李俐俐, 张瑞杰, 等. 无人机遥感及深度学习在油菜冻害识别中的应用研究[J]. 中国油料作物学报, 2021, 43(3): 479-486. |
AN T Z, LI L L, ZHANG R J, et al. Application research of unmanned aerial vehicle remote sensing and deep learning in identification of freezing injury in rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2021, 43(3): 479-486. (in Chinese with English abstract) | |
[6] | 韩文霆, 张立元, 牛亚晓, 等. 无人机遥感技术在精量灌溉中应用的研究进展[J]. 农业机械学报, 2020, 51(2): 1-14. |
HAN W T, ZHANG L Y, NIU Y X, et al. Review on UAV remote sensing application in precision irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 1-14. (in Chinese with English abstract) | |
[7] | 李明, 黄愉淇, 李绪孟, 等. 基于无人机遥感影像的水稻种植信息提取[J]. 农业工程学报, 2018, 34(4): 108-114. |
LI M, HUANG Y Q, LI X M, et al. Extraction of rice planting information based on remote sensing image from UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4): 108-114. (in Chinese with English abstract) | |
[8] |
CAO J J, LENG W C, LIU K, et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models[J]. Remote Sensing, 2018, 10(2): 89.
DOI URL |
[9] | 赵立成, 段玉林, 史云, 等. 基于无人机DSM的小麦倒伏识别方法[J]. 中国农业信息, 2019, 31(4): 36-42. |
ZHAO L C, DUAN Y L, SHI Y, et al. Wheat lodging identification using DSM by drone[J]. China Agricultural Informatics, 2019, 31(4): 36-42. (in Chinese with English abstract) | |
[10] | 李宗南, 陈仲新, 王利民, 等. 基于小型无人机遥感的玉米倒伏面积提取[J]. 农业工程学报, 2014, 30(19): 207-213. |
LI Z N, CHEN Z X, WANG L M, et al. Area extraction of maize lodging based on remote sensing by small unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 207-213. (in Chinese with English abstract) | |
[11] | 郭铌. 植被指数及其研究进展[J]. 干旱气象, 2003, 21(4): 71-75. |
GUO N. Vegetation index and its advances[J]. Arid Meteorology, 2003, 21(4): 71-75. (in Chinese with English abstract) | |
[12] |
POBLETE-ECHEVERRÍA C, OLMEDO G, INGRAM B, et al. Detection and segmentation of vine canopy in ultra-high spatial resolution RGB imagery obtained from unmanned aerial vehicle (UAV): a case study in a commercial vineyard[J]. Remote Sensing, 2017, 9(3): 268.
DOI URL |
[13] | 杨国英, 邢前国, 赵春晖, 等. 基于无人机RGB光学相机的漂浮绿藻探测研究[J]. 激光生物学报, 2021, 30(4): 316-324. |
YANG G Y, XING Q G, ZHAO C H, et al. Detection of floating green algae based on UAV RGB optical camera[J]. Acta Laser Biology Sinica, 2021, 30(4): 316-324. (in Chinese with English abstract) | |
[14] |
RAN DELOVIC P, DOR DEVIC V, MILIC S, et al. Prediction of soybean plant density using a machine learning model and vegetation indices extracted from RGB images taken with a UAV[J]. Agronomy, 2020, 10(8): 1108.
DOI URL |
[15] | 赵静, 杨焕波, 兰玉彬, 等. 基于无人机可见光图像的夏季玉米植被覆盖度提取方法[J]. 农业机械学报, 2019, 50(5): 232-240. |
ZHAO J, YANG H B, LAN Y B, et al. Extraction method of summer corn vegetation coverage based on visible light image of unmanned aerial vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 232-240. (in Chinese with English abstract) | |
[16] | 曹英丽, 林明童, 郭忠辉, 等. 基于Lab颜色空间的非监督GMM水稻无人机图像分割[J]. 农业机械学报, 2021, 52(1): 162-169. |
CAO Y L, LIN M T, GUO Z H, et al. Unsupervised GMM for rice segmentation with UAV images based on lab color space[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 162-169. (in Chinese with English abstract) | |
[17] | 李志铭, 赵静, 兰玉彬, 等. 基于无人机可见光图像的作物分类研究[J]. 西北农林科技大学学报(自然科学版), 2020, 48(6): 137-144. |
LI Z M, ZHAO J, LAN Y B, et al. Crop classification based on UAV visible image[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(6): 137-144. (in Chinese with English abstract) | |
[18] |
赵静, 李志铭, 鲁力群, 等. 基于无人机多光谱遥感图像的玉米田间杂草识别[J]. 中国农业科学, 2020, 53(8): 1545-1555.
DOI |
ZHAO J, LI Z M, LU L Q, et al. Weed identification in maize field based on multi-spectral remote sensing of unmanned aerial vehicle[J]. Scientia Agricultura Sinica, 2020, 53(8): 1545-1555. (in Chinese with English abstract)
DOI |
|
[19] | 阳昌霞, 刘汉湖, 张春. 基于SVM与RF的无人机高光谱农作物精细分类[J]. 河南科学, 2020, 38(12): 1987-1995. |
YANG C X, LIU H H, ZHANG C. UAV hyperspectral remote sensing image crop fine classification based on SVM and RF[J]. Henan Science, 2020, 38(12): 1987-1995. (in Chinese with English abstract) | |
[20] | 刘雪莲, 石雷, 李宇宸, 等. 基于无人机高光谱影像的薇甘菊分布提取研究: 以云南德宏州为例[J]. 热带亚热带植物学报, 2021, 29(6): 579-588. |
LIU X L, SHI L, LI Y C, et al. Distribution extraction of Mikania micrantha based on UAV hyperspectral image: a case study in Dehong, Yunnan Province, China[J]. Journal of Tropical and Subtropical Botany, 2021, 29(6): 579-588. (in Chinese with English abstract) | |
[21] |
YOU N S, DONG J W, HUANG J X, et al. The 10-m crop type maps in Northeast China during 2017-2019[J]. Scientific Data, 2021, 8: 41.
DOI PMID |
[22] |
LIU X X, YU L, ZHONG L H, et al. Spatial-temporal patterns of features selected using random forests: a case study of corn and soybeans mapping in the US[J]. International Journal of Remote Sensing, 2019, 40(1): 269-283.
DOI URL |
[23] | 王利民, 刘佳, 杨玲波, 等. 短波红外波段对玉米大豆种植面积识别精度的影响[J]. 农业工程学报, 2016, 32(19): 169-178. |
WANG L M, LIU J, YANG L B, et al. Impact of short infrared wave band on identification accuracy of corn and soybean area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(19): 169-178. (in Chinese with English abstract) | |
[24] |
XIE C Q, HE Y. Spectrum and image texture features analysis for early blight disease detection on eggplant leaves[J]. Sensors (Basel, Switzerland), 2016, 16(5): 676.
DOI URL |
[25] |
SABERIOON M M, AMIN M S M, ANUAR A R, et al. Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 32: 35-45.
DOI URL |
[26] |
ZHOU X, ZHENG H B, XU X Q, et al. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 246-255.
DOI URL |
[27] |
WOEBBECKE D M, MEYER G E, BARGEN K V, et al. Color indices for weed identification under various soil, residue, and lighting conditions[J]. Transactions of the ASAE, 1995, 38(1): 259-269.
DOI URL |
[28] | MEYER G E, HINDMAN T W, LAKSMI K. Machine vision detection parameters for plant species identification[J]. Proceedings of SPIE, 1999, 3543: 327-335. |
[29] |
HUNT E R, CAVIGELLI M, DAUGHTRY C S T, et al. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status[J]. Precision Agriculture, 2005, 6(4): 359-378.
DOI URL |
[30] |
SELLARO R, CREPY M, TRUPKIN S A, et al. Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis[J]. Plant Physiology, 2010, 154(1): 401-409.
DOI URL |
[31] |
魏全全, 李岚涛, 任涛, 等. 基于数字图像技术的冬油菜氮素营养诊断[J]. 中国农业科学, 2015, 48(19): 3877-3886.
DOI |
WEI Q Q, LI L T, REN T, et al. Diagnosing nitrogen nutrition status of winter rapeseed via digital image processing technique[J]. Scientia Agricultura Sinica, 2015, 48(19): 3877-3886. (in Chinese with English abstract) | |
[32] |
NIE S, WANG C, DONG P L, et al. Estimating leaf area index of maize using airborne discrete-return LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3259-3266.
DOI URL |
[33] |
井然, 邓磊, 赵文吉, 等. 基于可见光植被指数的面向对象湿地水生植被提取方法[J]. 应用生态学报, 2016, 27(5): 1427-1436.
DOI |
JING R, DENG L, ZHAO W J, et al. Object-oriented aquatic vegetation extracting approach based on visible vegetation indices[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1427-1436. (in Chinese with English abstract) | |
[34] | 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5): 152-157. |
WANG X Q, WANG M M, WANG S Q, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 152-157. (in Chinese with English abstract) | |
[35] | 支俊俊, 董娅, 鲁李灿, 等. 基于无人机RGB影像的玉米种植信息高精度提取方法[J]. 农业工程学报, 2021, 37(18): 48-54. |
ZHI J J, DONG Y, LU L C, et al. High-precision extraction method for maize planting information based on UAV RGB images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 48-54. (in Chinese with English abstract) |
[1] | 檀舒霞, 赵桃弟, 杨豪, 宁可君, 刘丽, 何庆元, 黄守程, 舒英杰. 遮阴对10个菜用大豆品种农艺性状、产量和硝态氮代谢的影响[J]. 浙江农业学报, 2023, 35(4): 729-735. |
[2] | 郭晗, 陆洲, 徐飞飞, 罗明, 张序. 基于全局敏感性分析与机器学习的冬小麦叶面积指数估算[J]. 浙江农业学报, 2022, 34(9): 2020-2031. |
[3] | 姜友谊, 张成健, 韩少宇, 杨小冬, 杨贵军, 杨浩. 基于无人机三维点云的玉米植株自动计数研究[J]. 浙江农业学报, 2022, 34(9): 2032-2042. |
[4] | 李文辰, 刘鑫, 齐泽铮, 于璐, 王芳. 灰皮支黑豆GmPUB24基因的生物信息学与胞囊线虫诱导表达分析[J]. 浙江农业学报, 2022, 34(6): 1124-1132. |
[5] | 王钧, 陆洲, 罗明, 徐飞飞, 张序. 基于机载多光谱的冬小麦返青期土壤墒情反演[J]. 浙江农业学报, 2022, 34(6): 1297-1305. |
[6] | 熊昕宜, 许泽玉, 何念佳, 何俊博, 陈正礼, 黄超, 刘文涛, 罗启慧. 大豆异黄酮干预肥胖大鼠肝氧化应激及炎症反应[J]. 浙江农业学报, 2022, 34(5): 942-948. |
[7] | 杨昕霞, 唐满生, 张斌. 大豆PP2C家族基因鉴定与响应盐胁迫的转录组分析[J]. 浙江农业学报, 2022, 34(2): 207-220. |
[8] | 刘娜, 范翘楚, 周佳, 宋雅静, 张古文, 冯志娟, 卜远鹏, 王斌, 龚亚明. 菜用大豆炭疽病病原菌的分离鉴定与防治[J]. 浙江农业学报, 2022, 34(12): 2682-2688. |
[9] | 周欣兴, 赵林, 张文杰, 谭昌伟, 李刚波, 石梦云, 张婷, 杨峰. 基于Sentinel-2多时相影像的果树种植区遥感提取[J]. 浙江农业学报, 2022, 34(12): 2767-2777. |
[10] | 孟娜, 薛辉, 魏明, 魏胜华. 氯通道抑制剂缓解栽培大豆盐伤害的离子特征[J]. 浙江农业学报, 2022, 34(10): 2095-2104. |
[11] | 邬宁珊, 王佳希, 张岩, 元慕田, 张琪, 高驰宇. 基于无人机可见光影像的树种和树冠信息提取——以晋西黄土区蔡家川流域为例[J]. 浙江农业学报, 2021, 33(8): 1505-1518. |
[12] | 杨昕霞, 张斌. 大豆LAZ1基因家族鉴定与GmLAZ1-9基因的功能研究[J]. 浙江农业学报, 2021, 33(4): 586-594. |
[13] | 张伟梅, 张古文, 冯志娟, 刘娜, 王斌, 卜远鹏. 菜用大豆籽粒中蔗糖的遗传与调控机制研究进展[J]. 浙江农业学报, 2021, 33(12): 2446-2456. |
[14] | 夏江英, 杨菊, 宋天浩, 庞莲凤, 叶婷, 任志华, 邓俊良. 维生素C对β-伴大豆球蛋白诱导的仔猪肠上皮细胞炎性损伤的保护作用[J]. 浙江农业学报, 2021, 33(11): 2017-2025. |
[15] | 杨菊, 邓俊良, 夏江英, 宋天浩, 庞莲凤, 任志华. 维生素A对大豆7S球蛋白致仔猪肠上皮细胞屏障功能损伤的影响[J]. 浙江农业学报, 2021, 33(11): 2026-2033. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||