浙江农业学报 ›› 2022, Vol. 34 ›› Issue (9): 2020-2031.DOI: 10.3969/j.issn.1004-1524.2022.09.21
郭晗1,2(), 陆洲2,*(
), 徐飞飞2, 罗明2, 张序1,*(
)
收稿日期:
2021-04-14
出版日期:
2022-09-25
发布日期:
2022-09-30
通讯作者:
陆洲,张序
作者简介:
张序,E-mail: xu1960zhang@sina.com基金资助:
GUO Han1,2(), LU Zhou2,*(
), XU Feifei2, LUO Ming2, ZHANG Xu1,*(
)
Received:
2021-04-14
Online:
2022-09-25
Published:
2022-09-30
Contact:
LU Zhou,ZHANG Xu
摘要:
在小麦叶面积指数(leaf area index,LAI)的估算过程中,光谱变量与机器学习算法(MLs)相结合的方法具有较好的性能,但由于输入参数过多会导致数据冗余,使得计算效率降低。为了提高LAI估算的精度和MLs的计算效率,本研究提出了全局敏感性分析(global sensitivity analysis,GSA)与MLs相结合的方法(简称GSA-MLs)。首先,基于PROSAIL模拟数据集,利用GSA量化植被生长参数对Sentinel-2光谱变量的影响;此外利用4种变量筛选策略对所有光谱变量进行排序,并选择最优变量作为MLs的输入参数。然后,通过偏最小二乘回归(partial least square regression,PLSR)、支持向量机(support vector machine,SVM)和随机森林(random forest,RF)3种MLs对小麦叶面积指数(LAI)进行估算。结果表明:红边植被指数主要受叶绿素含量的影响,而短波红外相关的植被指数主要受等效水厚度的影响,所有光谱变量均会受到参数之间的交互作用。SLAI-SInteraction筛选得到的30个光谱变量在估算小麦LAI表现最佳(R2=0.94,RMSE=0.38)。并且在模型反演过程中运行时间缩短了54.13%。本研究提出了全局敏感性分析与机器学习相结合的方法,该方法提高了机器学习法估算LAI精度以及应用过程中的计算效率和机理性,该方法有较好的适用性。
中图分类号:
郭晗, 陆洲, 徐飞飞, 罗明, 张序. 基于全局敏感性分析与机器学习的冬小麦叶面积指数估算[J]. 浙江农业学报, 2022, 34(9): 2020-2031.
GUO Han, LU Zhou, XU Feifei, LUO Ming, ZHANG Xu. Leaf area index estimation of winter wheat based on global sensitivity analysis and machine learning[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2020-2031.
波段 Bands | 中心波长 Central wavelength/nm | 空间分辨率 Space resolution/m |
---|---|---|
B1-Coastal aerosol | 443 | 60 |
B2-Blue | 490 | 10 |
B3-Green | 560 | 10 |
B4-Red | 665 | 10 |
B5-red edge (RE-1) | 705 | 20 |
B6-red edge (RE-2) | 740 | 20 |
B7-red edge (RE-3) | 783 | 20 |
B8-NIR | 842 | 10 |
B8a-Narrow NIR (NNIR) | 865 | 20 |
B9-water vapour | 945 | 60 |
B10-SWIR-Cirrus | 1 380 | 60 |
B11-SWIR-1 | 1 610 | 20 |
B12-SWIR-2 | 2 190 | 20 |
表1 Sentinel-2波段信息
Table 1 Sentinel-2 band information
波段 Bands | 中心波长 Central wavelength/nm | 空间分辨率 Space resolution/m |
---|---|---|
B1-Coastal aerosol | 443 | 60 |
B2-Blue | 490 | 10 |
B3-Green | 560 | 10 |
B4-Red | 665 | 10 |
B5-red edge (RE-1) | 705 | 20 |
B6-red edge (RE-2) | 740 | 20 |
B7-red edge (RE-3) | 783 | 20 |
B8-NIR | 842 | 10 |
B8a-Narrow NIR (NNIR) | 865 | 20 |
B9-water vapour | 945 | 60 |
B10-SWIR-Cirrus | 1 380 | 60 |
B11-SWIR-1 | 1 610 | 20 |
B12-SWIR-2 | 2 190 | 20 |
参数Parameter | 范围Range | |
---|---|---|
结构系数Structure coefficient (N) | 1.3~1.7 | 1.5±0.1 |
叶绿素含量Chlorophyll content (Cab)/(μg·cm-2) | 20~70 | 45±14 |
类胡萝卜素含量Carotenoid content (Car)/(μg·cm-2) | 5.0~17.5 | — |
等效水厚度Equivalent water thickness (Cw)/cm | 0.001~0.1 | 0.050 5±0.028 6 |
叶片含水量Leaf water content (Cm)/(g·cm-2) | 0.003~0.011 | 0.007±0.002 |
褐色素含量Brown pigment content (Cbp) | 0.05 | — |
平均叶倾角Average leaf angle (Lidfa)/(°) | 35~70 | 52.5±10.1 |
叶面积指数Leaf area index (LAI) | 0.1~9.0 | 4.550 1±2.569 1 |
热点Hot spot (hspot) | 0.05~0.5 | 0.275±0.130 |
土壤亮度系数Soil brightness parameter (Psoil) | 0~1 | 0.5±0.3 |
太阳天顶角Solar zenith angle (tts)/(°) | 25 | — |
观察者天顶角Observer zenith angle (tto)/(°) | 30 | — |
方位Azimuth (psi)/(°) | 45 | — |
表2 PROSAIL模型的参数设置
Table 2 Parameter settings of PROSAIL model
参数Parameter | 范围Range | |
---|---|---|
结构系数Structure coefficient (N) | 1.3~1.7 | 1.5±0.1 |
叶绿素含量Chlorophyll content (Cab)/(μg·cm-2) | 20~70 | 45±14 |
类胡萝卜素含量Carotenoid content (Car)/(μg·cm-2) | 5.0~17.5 | — |
等效水厚度Equivalent water thickness (Cw)/cm | 0.001~0.1 | 0.050 5±0.028 6 |
叶片含水量Leaf water content (Cm)/(g·cm-2) | 0.003~0.011 | 0.007±0.002 |
褐色素含量Brown pigment content (Cbp) | 0.05 | — |
平均叶倾角Average leaf angle (Lidfa)/(°) | 35~70 | 52.5±10.1 |
叶面积指数Leaf area index (LAI) | 0.1~9.0 | 4.550 1±2.569 1 |
热点Hot spot (hspot) | 0.05~0.5 | 0.275±0.130 |
土壤亮度系数Soil brightness parameter (Psoil) | 0~1 | 0.5±0.3 |
太阳天顶角Solar zenith angle (tts)/(°) | 25 | — |
观察者天顶角Observer zenith angle (tto)/(°) | 30 | — |
方位Azimuth (psi)/(°) | 45 | — |
植被指数 Vegetation index | 计算公式 Calculation formula | 参考文献 Reference |
---|---|---|
归一化植被指数Normalized difference vegetation index (NDVI) | (NIR-R))/(NIR+R) | [ |
标准化差异红边指数Normalized difference red-edge index (NDRE) | (NIR-RE)/(NIR+RE) | [ |
比值植被指数Ratio vegetation index (RVI) | NIR/R | [ |
红边比值植被指数Red-edge ratio vegetation index (RERVI) | NIR/RE | [ |
植被指数Difference vegetation index (DVI) | NIR-R | [ |
红边差植被指数Red-edge difference vegetation index (REDVI) | NIR-RE | [ |
绿色植被指数Green difference vegetation index(GDVI) | NIR-G | [ |
红边绿差植被指数Red edge green difference vegetation index (REGDVI) | RE-G | [ |
绿化率植被指数Green ratio vegetation index(GRVI) | NIR/G | [ |
红边绿比植被指数Red edge green ration vegetation index (REGRVI) | RE/G | [ |
绿色归一化植被指数Green normalized difference vegetation index (GNDVI) | (NIR-G)/(NIR+G) | [ |
红边绿归一化差值植被指数 | (RE-G)/(RE+G) | [ |
Red edge green normalized difference vegetation index (REGNDVI) | ||
增强型植被指数Enhanced vegetation index (EVI) | 2.5×(NIR-R)/(NIR+6·R-7.5·G+1)) | [ |
改良增强植被指数Modified enhanced vegetation index (MEVI) | 2.5×(NIR-RE)/(NIR+6·RE-7.5·G+1) | [ |
土壤矫正植被指数Soil-adjusted vegetation index (SAVI) | (NIR-R)/(NIR+R+0.25)+0.25 | [ |
土壤矫正红边指数Soil-adjusted red-edge index (SARE) | (NIR-RE)/(NIR+R+0.25)+0.25 | [ |
绿色叶绿素指数Green chlorophyll index (CIg) | (NIR-G)/G | [ |
叶绿素指数Chlorophyll index (CIre) | (NIR-RE)/RE | [ |
归一化水体指数Normalized difference water index (NDWI) | (NIR-SWIR)/(NIR+SWIR) | [ |
水分胁迫指数Moisture stress index (MSI) | SWIR/NIR | [ |
表3 用于估算小麦LAI的植被指数
Table 3 Vegetation index for estimation of wheat LAI
植被指数 Vegetation index | 计算公式 Calculation formula | 参考文献 Reference |
---|---|---|
归一化植被指数Normalized difference vegetation index (NDVI) | (NIR-R))/(NIR+R) | [ |
标准化差异红边指数Normalized difference red-edge index (NDRE) | (NIR-RE)/(NIR+RE) | [ |
比值植被指数Ratio vegetation index (RVI) | NIR/R | [ |
红边比值植被指数Red-edge ratio vegetation index (RERVI) | NIR/RE | [ |
植被指数Difference vegetation index (DVI) | NIR-R | [ |
红边差植被指数Red-edge difference vegetation index (REDVI) | NIR-RE | [ |
绿色植被指数Green difference vegetation index(GDVI) | NIR-G | [ |
红边绿差植被指数Red edge green difference vegetation index (REGDVI) | RE-G | [ |
绿化率植被指数Green ratio vegetation index(GRVI) | NIR/G | [ |
红边绿比植被指数Red edge green ration vegetation index (REGRVI) | RE/G | [ |
绿色归一化植被指数Green normalized difference vegetation index (GNDVI) | (NIR-G)/(NIR+G) | [ |
红边绿归一化差值植被指数 | (RE-G)/(RE+G) | [ |
Red edge green normalized difference vegetation index (REGNDVI) | ||
增强型植被指数Enhanced vegetation index (EVI) | 2.5×(NIR-R)/(NIR+6·R-7.5·G+1)) | [ |
改良增强植被指数Modified enhanced vegetation index (MEVI) | 2.5×(NIR-RE)/(NIR+6·RE-7.5·G+1) | [ |
土壤矫正植被指数Soil-adjusted vegetation index (SAVI) | (NIR-R)/(NIR+R+0.25)+0.25 | [ |
土壤矫正红边指数Soil-adjusted red-edge index (SARE) | (NIR-RE)/(NIR+R+0.25)+0.25 | [ |
绿色叶绿素指数Green chlorophyll index (CIg) | (NIR-G)/G | [ |
叶绿素指数Chlorophyll index (CIre) | (NIR-RE)/RE | [ |
归一化水体指数Normalized difference water index (NDWI) | (NIR-SWIR)/(NIR+SWIR) | [ |
水分胁迫指数Moisture stress index (MSI) | SWIR/NIR | [ |
变量 Variable | 精度 R2 | 均方根误差 RMSE | 变量 Variable | 精度 R2 | 均方根误差 RMSE | 变量 Variable | 精度 R2 | 均方根误差 RMSE |
---|---|---|---|---|---|---|---|---|
B | 0.251 | 1.124 | GRVI | 0.560 | 1.214 | REGNDVI3 | 0.343 | 1.130 |
G | 0.177 | 1.274 | GNDVI | 0.547 | 1.172 | REGRVI2 | 0.298 | 1.191 |
R | 0.373 | 1.207 | SAVI | 0.512 | 1.063 | REDVI3 | 0.286 | 1.039 |
RE1 | 0.083 | 1.130 | RVI | 0.511 | 1.187 | REGDVI3 | 0.279 | 1.003 |
RE2 | 0.136 | 1.000 | MTVI2 | 0.504 | 1.079 | REGNDVI2 | 0.271 | 1.151 |
RE3 | 0.255 | 0.982 | EVI | 0.496 | 1.010 | SARE3 | 0.181 | 1.080 |
NIR | 0.463 | 0.979 | NDVI | 0.492 | 1.132 | REGDVI2 | 0.180 | 1.023 |
NNIR | 0.286 | 0.958 | GDVI | 0.491 | 1.003 | NDRE3 | 0.155 | 1.086 |
SWIR1 | 0.115 | 1.333 | DVI | 0.486 | 1.002 | CIre3 | 0.153 | 1.082 |
SWIR2 | 0.303 | 1.548 | REDVI1 | 0.484 | 1.003 | RERVI3 | 0.153 | 1.082 |
SARE2 | 0.707 | 0.907 | SARE1 | 0.483 | 1.067 | MEVI2 | 0.087 | 1.105 |
NDRE2 | 0.681 | 0.954 | MEVI1 | 0.483 | 1.018 | MEVI3 | 0.062 | 1.084 |
REDVI2 | 0.678 | 0.896 | NDRE1 | 0.441 | 1.131 | REGDVI1 | 0.009 | 1.049 |
CIre2 | 0.667 | 0.950 | CIre1 | 0.439 | 1.108 | REGRVI1 | 0.003 | 1.067 |
RERVI2 | 0.667 | 0.950 | RERVI1 | 0.439 | 1.108 | REGNDVI1 | 0.003 | 1.066 |
Cig | 0.560 | 1.214 | REGRVI3 | 0.365 | 1.172 |
表4 单波段反射率及植被指数与LAI相关性
Table 4 Performance of Sentinel-2 spectral variables in LAI estimation
变量 Variable | 精度 R2 | 均方根误差 RMSE | 变量 Variable | 精度 R2 | 均方根误差 RMSE | 变量 Variable | 精度 R2 | 均方根误差 RMSE |
---|---|---|---|---|---|---|---|---|
B | 0.251 | 1.124 | GRVI | 0.560 | 1.214 | REGNDVI3 | 0.343 | 1.130 |
G | 0.177 | 1.274 | GNDVI | 0.547 | 1.172 | REGRVI2 | 0.298 | 1.191 |
R | 0.373 | 1.207 | SAVI | 0.512 | 1.063 | REDVI3 | 0.286 | 1.039 |
RE1 | 0.083 | 1.130 | RVI | 0.511 | 1.187 | REGDVI3 | 0.279 | 1.003 |
RE2 | 0.136 | 1.000 | MTVI2 | 0.504 | 1.079 | REGNDVI2 | 0.271 | 1.151 |
RE3 | 0.255 | 0.982 | EVI | 0.496 | 1.010 | SARE3 | 0.181 | 1.080 |
NIR | 0.463 | 0.979 | NDVI | 0.492 | 1.132 | REGDVI2 | 0.180 | 1.023 |
NNIR | 0.286 | 0.958 | GDVI | 0.491 | 1.003 | NDRE3 | 0.155 | 1.086 |
SWIR1 | 0.115 | 1.333 | DVI | 0.486 | 1.002 | CIre3 | 0.153 | 1.082 |
SWIR2 | 0.303 | 1.548 | REDVI1 | 0.484 | 1.003 | RERVI3 | 0.153 | 1.082 |
SARE2 | 0.707 | 0.907 | SARE1 | 0.483 | 1.067 | MEVI2 | 0.087 | 1.105 |
NDRE2 | 0.681 | 0.954 | MEVI1 | 0.483 | 1.018 | MEVI3 | 0.062 | 1.084 |
REDVI2 | 0.678 | 0.896 | NDRE1 | 0.441 | 1.131 | REGDVI1 | 0.009 | 1.049 |
CIre2 | 0.667 | 0.950 | CIre1 | 0.439 | 1.108 | REGRVI1 | 0.003 | 1.067 |
RERVI2 | 0.667 | 0.950 | RERVI1 | 0.439 | 1.108 | REGNDVI1 | 0.003 | 1.066 |
Cig | 0.560 | 1.214 | REGRVI3 | 0.365 | 1.172 |
序号 No. | 策略1 Strategy 1(SLAI) | 策略2 Strategy 2(SLAI+SCab) | 策略3 Strategy 3(SLAI-SInteraction) | 策略4 Strategy 4(SLAI+SCab-SInteraction) |
---|---|---|---|---|
1 | MTVI2 | SARE1 | MTVI2 | MTVI2 |
2 | SAVI | NDRE1 | SAVI | SARE1 |
3 | NDVI | MTVI2 | NDVI | NDRE1 |
4 | RVI | GNDVI | RVI | SAVI |
5 | NDRE3 | REGNDVI3 | DVI | RVI |
6 | CIRE3 | REGNDVI2 | REDVI1 | SARE2 |
7 | RERVI3 | SAVI | REGDVI3 | GNDVI |
8 | DVI | RVI | SARE1 | REGNDVI3 |
9 | SARE3 | REGRVI2 | GDVI | REGNDVI2 |
10 | REDVI1 | CIRE1 | NDWI2 | REGRVI2 |
11 | REGDVI3 | RERVI1 | SARE3 | NDRE2 |
12 | MSI2 | REGRVI3 | NDRE3 | CIRE1 |
13 | SARE1 | NDVI | REGDVI2 | RERVI1 |
14 | NDWI2 | CIg | CIRE3 | CIRE2 |
15 | GDVI | GRVI | RERVI3 | RERVI2 |
16 | REGDVI2 | SARE2 | MSI2 | REGRVI3 |
17 | REGNDVI2 | REGRVI1 | EVI | CIg |
18 | REGNDVI3 | REGNDVI1 | REGNDVI2 | GRVI |
19 | EVI | NDRE2 | REGNDVI3 | REDVI1 |
20 | GNDVI | CIRE2 | GNDVI | REGRVI1 |
21 | MEVI1 | RERVI2 | NDRE1 | REDVI2 |
22 | R | REDVI2 | MEVI1 | REGNDVI1 |
23 | NDRE1 | REDVI1 | RE-3 | NDVI |
24 | RE-3 | NDRE3 | NIR | REGDVI3 |
25 | NIR | CIRE3 | NNIR | DVI |
26 | NNIR | RERVI3 | REDVI2 | GDVI |
27 | MSI1 | REGDVI3 | MSI1 | EVI |
28 | REGNDVI1 | EVI | REGNDVI1 | NDWI2 |
29 | REGRVI1 | DVI | NDWI1 | SARE3 |
30 | REDVI2 | GDVI | REGRVI1 | REGDVI2 |
表5 不同策略光谱变量排序结果
Table 5 Different strategies for sorting spectral variables
序号 No. | 策略1 Strategy 1(SLAI) | 策略2 Strategy 2(SLAI+SCab) | 策略3 Strategy 3(SLAI-SInteraction) | 策略4 Strategy 4(SLAI+SCab-SInteraction) |
---|---|---|---|---|
1 | MTVI2 | SARE1 | MTVI2 | MTVI2 |
2 | SAVI | NDRE1 | SAVI | SARE1 |
3 | NDVI | MTVI2 | NDVI | NDRE1 |
4 | RVI | GNDVI | RVI | SAVI |
5 | NDRE3 | REGNDVI3 | DVI | RVI |
6 | CIRE3 | REGNDVI2 | REDVI1 | SARE2 |
7 | RERVI3 | SAVI | REGDVI3 | GNDVI |
8 | DVI | RVI | SARE1 | REGNDVI3 |
9 | SARE3 | REGRVI2 | GDVI | REGNDVI2 |
10 | REDVI1 | CIRE1 | NDWI2 | REGRVI2 |
11 | REGDVI3 | RERVI1 | SARE3 | NDRE2 |
12 | MSI2 | REGRVI3 | NDRE3 | CIRE1 |
13 | SARE1 | NDVI | REGDVI2 | RERVI1 |
14 | NDWI2 | CIg | CIRE3 | CIRE2 |
15 | GDVI | GRVI | RERVI3 | RERVI2 |
16 | REGDVI2 | SARE2 | MSI2 | REGRVI3 |
17 | REGNDVI2 | REGRVI1 | EVI | CIg |
18 | REGNDVI3 | REGNDVI1 | REGNDVI2 | GRVI |
19 | EVI | NDRE2 | REGNDVI3 | REDVI1 |
20 | GNDVI | CIRE2 | GNDVI | REGRVI1 |
21 | MEVI1 | RERVI2 | NDRE1 | REDVI2 |
22 | R | REDVI2 | MEVI1 | REGNDVI1 |
23 | NDRE1 | REDVI1 | RE-3 | NDVI |
24 | RE-3 | NDRE3 | NIR | REGDVI3 |
25 | NIR | CIRE3 | NNIR | DVI |
26 | NNIR | RERVI3 | REDVI2 | GDVI |
27 | MSI1 | REGDVI3 | MSI1 | EVI |
28 | REGNDVI1 | EVI | REGNDVI1 | NDWI2 |
29 | REGRVI1 | DVI | NDWI1 | SARE3 |
30 | REDVI2 | GDVI | REGRVI1 | REGDVI2 |
变量数量 Number of variables | 策略Strategy | SLAI | SLAI+SCab | SLAI-SInteraction | SLAI+SCab-SInteraction | ||||
---|---|---|---|---|---|---|---|---|---|
模型Modeling | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
10 | GSA-PLSR | 0.69 | 0.84 | 0.69 | 0.84 | 0.69 | 0.84 | 0.70 | 0.82 |
GSA-SVM | 0.40 | 1.17 | 0.41 | 1.16 | 0.40 | 1.17 | 0.41 | 1.16 | |
GSA-RF | 0.91 | 0.45 | 0.90 | 0.48 | 0.91 | 0.46 | 0.92 | 0.42 | |
20 | GSA-PLSR | 0.76 | 0.73 | 0.75 | 0.75 | 0.76 | 0.73 | 0.79 | 0.69 |
GSA-SVM | 0.40 | 1.17 | 0.44 | 1.13 | 0.40 | 1.17 | 0.44 | 1.13 | |
GSA-RF | 0.92 | 0.44 | 0.92 | 0.42 | 0.92 | 0.44 | 0.92 | 0.42 | |
30 | GSA-PLSR | 0.87 | 0.55 | 0.93 | 0.40 | 0.88 | 0.53 | 0.92 | 0.44 |
GSA-SVM | 0.40 | 1.17 | 0.44 | 1.12 | 0.40 | 1.16 | 0.44 | 1.12 | |
GSA-RF | 0.93 | 0.40 | 0.93 | 0.40 | 0.94 | 0.38 | 0.94 | 0.38 |
表6 冬小麦LAI估算模型对比
Table 6 Comparison of wheat LAI estimation by GSA-MLs
变量数量 Number of variables | 策略Strategy | SLAI | SLAI+SCab | SLAI-SInteraction | SLAI+SCab-SInteraction | ||||
---|---|---|---|---|---|---|---|---|---|
模型Modeling | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
10 | GSA-PLSR | 0.69 | 0.84 | 0.69 | 0.84 | 0.69 | 0.84 | 0.70 | 0.82 |
GSA-SVM | 0.40 | 1.17 | 0.41 | 1.16 | 0.40 | 1.17 | 0.41 | 1.16 | |
GSA-RF | 0.91 | 0.45 | 0.90 | 0.48 | 0.91 | 0.46 | 0.92 | 0.42 | |
20 | GSA-PLSR | 0.76 | 0.73 | 0.75 | 0.75 | 0.76 | 0.73 | 0.79 | 0.69 |
GSA-SVM | 0.40 | 1.17 | 0.44 | 1.13 | 0.40 | 1.17 | 0.44 | 1.13 | |
GSA-RF | 0.92 | 0.44 | 0.92 | 0.42 | 0.92 | 0.44 | 0.92 | 0.42 | |
30 | GSA-PLSR | 0.87 | 0.55 | 0.93 | 0.40 | 0.88 | 0.53 | 0.92 | 0.44 |
GSA-SVM | 0.40 | 1.17 | 0.44 | 1.12 | 0.40 | 1.16 | 0.44 | 1.12 | |
GSA-RF | 0.93 | 0.40 | 0.93 | 0.40 | 0.94 | 0.38 | 0.94 | 0.38 |
机器学习法MLs | R2 | RMSE |
---|---|---|
PLSR | 0.81 | 0.31 |
SVM | 0.41 | 1.06 |
RF | 0.92 | 0.40 |
表7 MLs法估算小麦LAI的比较
Table 7 Comparison of wheat LAI estimation by MLs
机器学习法MLs | R2 | RMSE |
---|---|---|
PLSR | 0.81 | 0.31 |
SVM | 0.41 | 1.06 |
RF | 0.92 | 0.40 |
建模方法 Modeling methods | 机器学习 MLs | 全局敏感性机器学习 GSA-MLs |
---|---|---|
PLSR | 487.772 | 226.270 |
SVM | 495.957 | 227.190 |
RF | 569.327 | 261.130 |
表8 不同估算模型应用过程中的计算机运行时间
Table 8 Computer running time in the application process of different estimation models s
建模方法 Modeling methods | 机器学习 MLs | 全局敏感性机器学习 GSA-MLs |
---|---|---|
PLSR | 487.772 | 226.270 |
SVM | 495.957 | 227.190 |
RF | 569.327 | 261.130 |
[1] |
ZHUO W, HUANG J X, GAO X R, et al. Prediction of winter wheat maturity dates through assimilating remotely sensed leaf area index into crop growth model[J]. Remote Sensing, 2020, 12(18): 2896.
DOI URL |
[2] |
LI H, CHEN Z X, JIANG Z W, et al. Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat[J]. Journal of Integrative Agriculture, 2017, 16(2): 266-285.
DOI URL |
[3] |
DONG T F, LIU J G, SHANG J L, et al. Assessment of red-edge vegetation indices for crop leaf area index estimation[J]. Remote Sensing of Environment, 2019, 222: 133-143.
DOI URL |
[4] |
HOJAS GASCÓN L, CECCHERINI G, GARCÍA HARO F, et al. The potential of high resolution (5 m) RapidEye optical data to estimate above ground biomass at the national level over Tanzania[J]. Forests, 2019, 10(2): 107.
DOI URL |
[5] |
AZADBAKHT M, ASHOURLOO D, AGHIGHI H, et al. Wheat leaf rust detection at canopy scale under different LAI levels using machine learning techniques[J]. Computers and Electronics in Agriculture, 2019, 156: 119-128.
DOI URL |
[6] |
PADALIA H, SINHA S K, BHAVE V, et al. Estimating canopy LAI and chlorophyll of tropical forest plantation (North India) using Sentinel-2 data[J]. Advances in Space Research, 2020, 65(1): 458-469.
DOI URL |
[7] |
CUI B, ZHAO Q J, HUANG W J, et al. Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2 and EnMAP data[J]. Journal of Integrative Agriculture, 2019, 18(6): 1230-1245.
DOI |
[8] |
ESTÉVEZ J, VICENT J, RIVERA-CAICEDO J P, et al. Gaussian processes retrieval of LAI from Sentinel-2 top-of-atmosphere radiance data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 289-304.
DOI URL |
[9] | 王丽爱, 周旭东, 朱新开, 等. 基于HJ-CCD数据和随机森林算法的小麦叶面积指数反演[J]. 农业工程学报, 2016, 32(3): 149-154. |
WANG L A, ZHOU X D, ZHU X K, et al. Inverting wheat leaf area index based on HJ-CCD remote sensing data and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 149-154. (in Chinese with English abstract) | |
[10] |
LI X C, ZHANG Y J, LUO J H, et al. Quantification winter wheat LAI with HJ-1CCD image features over multiple growing seasons[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 44: 104-112.
DOI URL |
[11] |
WANG L, CHANG Q R, LI F L, et al. Effects of growth stage development on paddy rice leaf area index prediction models[J]. Remote Sensing, 2019, 11(3): 361.
DOI URL |
[12] |
ABDEL-RAHMAN E M, AHMED F B, ISMAIL R. Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data[J]. International Journal of Remote Sensing, 2013, 34(2): 712-728.
DOI URL |
[13] |
FANG H L, BARET F, PLUMMER S, et al. An overview of global leaf area index (LAI): methods, products, validation, and applications[J]. Reviews of Geophysics, 2019, 57(3): 739-799.
DOI URL |
[14] |
DE LOS CAMPOS G, GIANOLA D, ROSA G J M. Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation[J]. Journal of Animal Science, 2009, 87(6): 1883-1887.
DOI PMID |
[15] | SOBOL I. On sensitivity estimation for nonlinear mathematical models[J]. Matem Modelirovanie, 1990, 2(1): 112-118. |
[16] |
SALTELLI A. Sensitivity analysis: Could better methods be used?[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D3): 3789-3793.
DOI URL |
[17] |
SUN Y H, QIN Q M, REN H Z, et al. Red-edge band vegetation indices for leaf area index estimation from sentinel-2/MSI imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 826-840.
DOI URL |
[18] |
CHEN H Y, HUANG W J, LI W, et al. Estimation of LAI in winter wheat from multi-angular hyperspectral VNIR data: effects of view angles and plant architecture[J]. Remote Sensing, 2018, 10(10): 1630.
DOI URL |
[19] |
TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150.
DOI URL |
[20] |
SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2/3): 337-354.
DOI URL |
[21] |
BASSO M, STOCCHERO D, VENTURA BAYAN HENRIQUES R, et al. Proposal for an embedded system architecture using a GNDVI algorithm to support UAV-based agrochemical spraying[J]. Sensors, 2019, 19(24): 5397.
DOI URL |
[22] | VINCINI M, FRAZZI E. Active sensing of the N status of wheat using optimized wavelength combination: impact of seed rate, variety and growth stage[J]. Precision Agriculture, 2009. |
[23] |
JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663-666.
DOI URL |
[24] |
BUSCHMANN C, NAGEL E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation[J]. International Journal of Remote Sensing, 1993, 14(4): 711-722.
DOI URL |
[25] |
ZHANG H X, LI Q Z, LIU J G, et al. Corrections to “image classification using RapidEye data: integration of spectral and textual features in a random forest classifier” [DEC 17 5334-5349][J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2571.
DOI URL |
[26] |
JIANG Z Y, HUETE A R, DIDAN K, et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote Sensing of Environment, 2008, 112(10): 3833-3845.
DOI URL |
[27] |
JUSTICE C O, VERMOTE E, TOWNSHEND J R G, et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1228-1249.
DOI URL |
[28] |
HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.
DOI URL |
[29] |
ALI M, MONTZKA C, STADLER A, et al. Estimation and validation of RapidEye-based time-series of leaf area index for winter wheat in the rur catchment (Germany)[J]. Remote Sensing, 2015, 7(3): 2808-2831.
DOI URL |
[30] |
CLEVERS J, KOOISTRA L, VAN DEN BRANDE M. Using sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop[J]. Remote Sensing, 2017, 9(5): 405.
DOI URL |
[31] |
GAO B C. NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3): 257-266.
DOI URL |
[32] |
DORAISWAMY P C, THOMPSON D R. A crop moisture stress index for large areas and its application in the prediction of spring wheat phenology[J]. Agricultural Meteorology, 1982, 27(1/2): 1-15.
DOI URL |
[33] |
NANNI M R, CEZAR E, SILVA JUNIOR C A D, et al. Partial least squares regression (PLSR) associated with spectral response to predict soil attributes in transitional lithologies[J]. Archives of Agronomy and Soil Science, 2018, 64(5): 682-695.
DOI URL |
[34] | 翁永玲, 戚浩平, 方洪宾, 等. 基于PLSR方法的青海茶卡-共和盆地土壤盐分高光谱遥感反演[J]. 土壤学报, 2010, 47(6): 1255-1263. |
WENG Y L, QI H P, FANG H B, et al. PLSR-based hyperspectral remote sensing retrieval of soil salinity of Chaka-Gonghe basin in Qinghai Province[J]. Acta Pedologica Sinica, 2010, 47(6): 1255-1263. (in Chinese with English abstract) | |
[35] | VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 1999. |
[36] | BUHMANN M D. Radial basis functions[M]. Cambridge: Cambridge University Press, 2003. |
[37] |
LIANG L, QIN Z H, ZHAO S H, et al. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method[J]. International Journal of Remote Sensing, 2016, 37(13): 2923-2949.
DOI URL |
[38] |
MENG X T, BAO Y L, LIU J G, et al. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 89: 102111.
DOI URL |
[39] |
HOUBORG R, MCCABE M F. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135: 173-188.
DOI URL |
[1] | 王斯亮, 邵越, 闫成进. 草地贪夜蛾在玉米-小麦寄主转换中的转录组分析[J]. 浙江农业学报, 2022, 34(6): 1236-1247. |
[2] | 蔡瑶, 缪宇轩, 吴浩, 王丹. 高CO2浓度下冬小麦的高光谱特征及其与叶面积指数和SPAD值的反演[J]. 浙江农业学报, 2022, 34(3): 582-589. |
[3] | 闫宁, 张晗, 董宏图, 康凯, 罗斌. 基于透射光和反射光图像同位分割的小麦品种识别方法研究[J]. 浙江农业学报, 2022, 34(3): 590-598. |
[4] | 王掌军, 姚明明, 余慧霞, 王彦青, 李清峰, 刘凤楼, 刘彩霞, 张双喜, 张晓岗, 刘生祥. 宁春4号×河东乌麦F2∶5家系遗传图谱构建与籽粒蛋白质性状QTL分析[J]. 浙江农业学报, 2021, 33(8): 1367-1378. |
[5] | 王玲玲, 吴文革, 李瑞, 胡健, 闫素辉, 邵庆勤, 许峰, 张从宇, 周永进, 李文阳. 施氮量对弱筋小麦籽粒品质与氮素利用的影响[J]. 浙江农业学报, 2021, 33(5): 777-784. |
[6] | 张矞勋, 王磊, 璩向宁, 曹媛, 吴梦瑶, 于瑞鑫, 孙源. GF-1/WFV在玉米叶面积指数估算中的应用研究[J]. 浙江农业学报, 2021, 33(5): 861-872. |
[7] | 姚钊, 王重阳, 崔静. 小麦不同穗位籽粒灌浆特性的影响[J]. 浙江农业学报, 2021, 33(4): 576-585. |
[8] | 赵珂, 李秋荣, 侯璐, 白耀博, 蒋礼玲, 魏有海, 郭青云. 2份春小麦种质资源成株期抗条锈病基因遗传分析[J]. 浙江农业学报, 2021, 33(4): 595-601. |
[9] | 韩晓蕾, 高仕祺, 张帆, 羊健, 刘芃, 姜鸿明, 李林志. 酵母双杂交筛选与小麦黄花叶病毒P2互作的寄主因子[J]. 浙江农业学报, 2021, 33(3): 497-505. |
[10] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
[11] | 王潭刚, 孙婷, 王冀川, 李慧琴, 高振, 石元强. 播期和密度对滴灌冬小麦群体结构与抗倒特性的影响[J]. 浙江农业学报, 2021, 33(2): 193-202. |
[12] | 王骏, 吴小保, 宋佳, 邓倩倩, 曾广, 任明见, 叶茂. 外源钙浸种对小麦防御酶和麦二叉蚜体内解毒酶活性的影响[J]. 浙江农业学报, 2021, 33(12): 2339-2347. |
[13] | 王士臻, 王教瑜, 王艳丽, 孙国仓. 麦瘟病与小麦抗麦瘟基因研究进展[J]. 浙江农业学报, 2021, 33(11): 2205-2212. |
[14] | 张统帅, 闫丽娟, 李广, 陈国鹏, 罗永忠. 免耕和秸秆覆盖对旱作区土壤氮素、水分和春小麦产量的影响[J]. 浙江农业学报, 2020, 32(8): 1329-1341. |
[15] | 吴承杰, 任兰天, 郝冰, 邵庆勤, 王泓, 陈峰, 代高峰, 梅世远, 张从军. 秸秆堆肥部分替代化肥配施硝化抑制剂对冬小麦温室气体排放的影响[J]. 浙江农业学报, 2020, 32(7): 1233-1240. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 867
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 437
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||