浙江农业学报 ›› 2022, Vol. 34 ›› Issue (9): 2032-2042.DOI: 10.3969/j.issn.1004-1524.2022.09.22

• 生物系统工程 • 上一篇    下一篇

基于无人机三维点云的玉米植株自动计数研究

姜友谊1(), 张成健1,2,3, 韩少宇2,3, 杨小冬2,3, 杨贵军2,3, 杨浩2,3,*()   

  1. 1.西安科技大学 测绘科学与技术学院,陕西 西安 710054
    2.北京农业信息技术研究中心 农业农村部农业遥感机理与定量遥感重点实验室,北京100097
    3.国家农业信息化工程技术研究中心,北京100097
  • 收稿日期:2021-03-24 出版日期:2022-09-25 发布日期:2022-09-30
  • 通讯作者: 杨浩
  • 作者简介:*杨浩,E-mail: yangh@nercita.org.cn
    姜友谊(1974—),女,陕西西安人,硕士,副教授,主要从事空间数据处理与分析、3S集成与应用研究。E-mail: youyi_jiang1974@163.com
  • 基金资助:
    广东省重点领域研发计划(2019B020216001);国家自然科学基金(41972315);国家自然科学基金(41671411)

Automatic counting of maize plants based on unmanned aerial vehicle (UAV) 3D point cloud

JIANG Youyi1(), ZHANG Chengjian1,2,3, HAN Shaoyu2,3, YANG Xiaodong2,3, YANG Guijun2,3, YANG Hao2,3,*()   

  1. 1. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China
    2. Key Laboratory of Quantitative Remote Sensing in Agriculture, Ministry of Agriculture and Rural Affairs, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China
    3. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
  • Received:2021-03-24 Online:2022-09-25 Published:2022-09-30
  • Contact: YANG Hao

摘要:

植株计数是农民、育种专家等在整个作物生长季评估作物生长状况和管理实践的最常用方法之一,可用来进行合理的田间规划以及管理。针对高密度种植试验区高通量获取玉米自动株数方法匮乏的问题,本研究利用无人机遥感平台,获取田间314个不同基因型的玉米高密度育种小区的数码影像和激光雷达(light detection and ranging,LiDAR)点云数据,发展了一种结合玉米三维空间信息的固定窗口局部最大值算法,实现了高密度玉米育种小区成株数的自动检测,并对比了基于此两种不同数据源的检测精度。该方法以冠层高度模型(canopy height model,CHM)中包含的株高信息为基础,以玉米种植株距为固定窗口进行单株玉米种子点检测,并将检测到的种子点与目视解译的玉米位置进行空间匹配来进行精度的评估。结果表明,基于无人机数码影像构建3种空间分辨率CHM的综合检测精度分别为81.30%、83.11%和78.93%;基于无人机LiDAR的综合精度分别为82.33%、88.66%和81.46%;基于两种数据源构建的CHM,均在空间分辨率为0.05 m时,获得最佳的检测精度。此外,当空间分辨率相同时,LiDAR数据检测精度略优于无人机数码影像,无人机数码传感器由于其成本低、易于操作等优势,在大面积、高密度育种小区的玉米高通量单株检测中表现出更大的潜力。本研究实现了对密植玉米育种试验区玉米株数的自动计数,为表型筛选、田间管理和精准估产等提供依据。

关键词: 自动计数, 无人机, 高通量, 局部最大值, 冠层高度模型, 大田育种

Abstract:

Plant counting is one of the most commonly used methods for farmers and breeding experts to evaluate crop growth status and management practices throughout the crop growing season, which can be used for reasonable field planning and management. In view of the lack of high-throughput methods to obtain the number of maize plants in the high-density planting experimental area, this study used the unmanned aerial vehicle (UAV) remote sensing platform to obtain the digital images and light detection and ranging (LiDAR) point cloud data of 314 maize high-density breeding plots with different genotypes in the field, and developed a fixed window local maximum algorithm combined with maize three-dimensional spatial information. The automatic detection of the number of plants in high density maize breeding plot was realized, and the detection accuracy based on the two different data sources was compared. Based on the plant height information in the crop height model (CHM), the method detected the seed points of each maize plant by using local maximum filter with a fixed window size, and then we spatially matched the detected seed points with the position of maize interpreted visually to evaluate the accuracy. The results showed that the comprehensive detection accuracy of three spatial resolutions CHM based on UAV digital images was 81.30%, 83.11% and 78.93% respectively, and the comprehensive accuracy of UAV-LiDAR was 82.33%, 88.66% and 81.46% respectively. The CHM, based on the two different data sources had the best detection accuracy when the spatial resolution was 0.05 m. In addition, when the spatial resolution was the same, LiDAR performsed better than UAV digital images. But when the demand for detection accuracy was not high, the digital sensor showed greater potential in field management because of its cheap price and easy to operate. This study realized the automatic counting of maize plant number in dense planting maize breeding experimental area, which provided a basis for phenotypic screening, field management and accurate yield estimation.

Key words: automatic counting, unmanned aerial vehicle, high-throughput, local maximum, canopy height model, field breeding

中图分类号: