浙江农业学报 ›› 2022, Vol. 34 ›› Issue (9): 2020-2031.DOI: 10.3969/j.issn.1004-1524.2022.09.21
郭晗1,2(
), 陆洲2,*(
), 徐飞飞2, 罗明2, 张序1,*(
)
收稿日期:2021-04-14
出版日期:2022-09-25
发布日期:2022-09-30
作者简介:张序,E-mail: xu1960zhang@sina.com通讯作者:
陆洲,张序
基金资助:
GUO Han1,2(
), LU Zhou2,*(
), XU Feifei2, LUO Ming2, ZHANG Xu1,*(
)
Received:2021-04-14
Online:2022-09-25
Published:2022-09-30
Contact:
LU Zhou,ZHANG Xu
摘要:
在小麦叶面积指数(leaf area index,LAI)的估算过程中,光谱变量与机器学习算法(MLs)相结合的方法具有较好的性能,但由于输入参数过多会导致数据冗余,使得计算效率降低。为了提高LAI估算的精度和MLs的计算效率,本研究提出了全局敏感性分析(global sensitivity analysis,GSA)与MLs相结合的方法(简称GSA-MLs)。首先,基于PROSAIL模拟数据集,利用GSA量化植被生长参数对Sentinel-2光谱变量的影响;此外利用4种变量筛选策略对所有光谱变量进行排序,并选择最优变量作为MLs的输入参数。然后,通过偏最小二乘回归(partial least square regression,PLSR)、支持向量机(support vector machine,SVM)和随机森林(random forest,RF)3种MLs对小麦叶面积指数(LAI)进行估算。结果表明:红边植被指数主要受叶绿素含量的影响,而短波红外相关的植被指数主要受等效水厚度的影响,所有光谱变量均会受到参数之间的交互作用。SLAI-SInteraction筛选得到的30个光谱变量在估算小麦LAI表现最佳(R2=0.94,RMSE=0.38)。并且在模型反演过程中运行时间缩短了54.13%。本研究提出了全局敏感性分析与机器学习相结合的方法,该方法提高了机器学习法估算LAI精度以及应用过程中的计算效率和机理性,该方法有较好的适用性。
中图分类号:
郭晗, 陆洲, 徐飞飞, 罗明, 张序. 基于全局敏感性分析与机器学习的冬小麦叶面积指数估算[J]. 浙江农业学报, 2022, 34(9): 2020-2031.
GUO Han, LU Zhou, XU Feifei, LUO Ming, ZHANG Xu. Leaf area index estimation of winter wheat based on global sensitivity analysis and machine learning[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2020-2031.
| 波段 Bands | 中心波长 Central wavelength/nm | 空间分辨率 Space resolution/m |
|---|---|---|
| B1-Coastal aerosol | 443 | 60 |
| B2-Blue | 490 | 10 |
| B3-Green | 560 | 10 |
| B4-Red | 665 | 10 |
| B5-red edge (RE-1) | 705 | 20 |
| B6-red edge (RE-2) | 740 | 20 |
| B7-red edge (RE-3) | 783 | 20 |
| B8-NIR | 842 | 10 |
| B8a-Narrow NIR (NNIR) | 865 | 20 |
| B9-water vapour | 945 | 60 |
| B10-SWIR-Cirrus | 1 380 | 60 |
| B11-SWIR-1 | 1 610 | 20 |
| B12-SWIR-2 | 2 190 | 20 |
表1 Sentinel-2波段信息
Table 1 Sentinel-2 band information
| 波段 Bands | 中心波长 Central wavelength/nm | 空间分辨率 Space resolution/m |
|---|---|---|
| B1-Coastal aerosol | 443 | 60 |
| B2-Blue | 490 | 10 |
| B3-Green | 560 | 10 |
| B4-Red | 665 | 10 |
| B5-red edge (RE-1) | 705 | 20 |
| B6-red edge (RE-2) | 740 | 20 |
| B7-red edge (RE-3) | 783 | 20 |
| B8-NIR | 842 | 10 |
| B8a-Narrow NIR (NNIR) | 865 | 20 |
| B9-water vapour | 945 | 60 |
| B10-SWIR-Cirrus | 1 380 | 60 |
| B11-SWIR-1 | 1 610 | 20 |
| B12-SWIR-2 | 2 190 | 20 |
| 参数Parameter | 范围Range | |
|---|---|---|
| 结构系数Structure coefficient (N) | 1.3~1.7 | 1.5±0.1 |
| 叶绿素含量Chlorophyll content (Cab)/(μg·cm-2) | 20~70 | 45±14 |
| 类胡萝卜素含量Carotenoid content (Car)/(μg·cm-2) | 5.0~17.5 | — |
| 等效水厚度Equivalent water thickness (Cw)/cm | 0.001~0.1 | 0.050 5±0.028 6 |
| 叶片含水量Leaf water content (Cm)/(g·cm-2) | 0.003~0.011 | 0.007±0.002 |
| 褐色素含量Brown pigment content (Cbp) | 0.05 | — |
| 平均叶倾角Average leaf angle (Lidfa)/(°) | 35~70 | 52.5±10.1 |
| 叶面积指数Leaf area index (LAI) | 0.1~9.0 | 4.550 1±2.569 1 |
| 热点Hot spot (hspot) | 0.05~0.5 | 0.275±0.130 |
| 土壤亮度系数Soil brightness parameter (Psoil) | 0~1 | 0.5±0.3 |
| 太阳天顶角Solar zenith angle (tts)/(°) | 25 | — |
| 观察者天顶角Observer zenith angle (tto)/(°) | 30 | — |
| 方位Azimuth (psi)/(°) | 45 | — |
表2 PROSAIL模型的参数设置
Table 2 Parameter settings of PROSAIL model
| 参数Parameter | 范围Range | |
|---|---|---|
| 结构系数Structure coefficient (N) | 1.3~1.7 | 1.5±0.1 |
| 叶绿素含量Chlorophyll content (Cab)/(μg·cm-2) | 20~70 | 45±14 |
| 类胡萝卜素含量Carotenoid content (Car)/(μg·cm-2) | 5.0~17.5 | — |
| 等效水厚度Equivalent water thickness (Cw)/cm | 0.001~0.1 | 0.050 5±0.028 6 |
| 叶片含水量Leaf water content (Cm)/(g·cm-2) | 0.003~0.011 | 0.007±0.002 |
| 褐色素含量Brown pigment content (Cbp) | 0.05 | — |
| 平均叶倾角Average leaf angle (Lidfa)/(°) | 35~70 | 52.5±10.1 |
| 叶面积指数Leaf area index (LAI) | 0.1~9.0 | 4.550 1±2.569 1 |
| 热点Hot spot (hspot) | 0.05~0.5 | 0.275±0.130 |
| 土壤亮度系数Soil brightness parameter (Psoil) | 0~1 | 0.5±0.3 |
| 太阳天顶角Solar zenith angle (tts)/(°) | 25 | — |
| 观察者天顶角Observer zenith angle (tto)/(°) | 30 | — |
| 方位Azimuth (psi)/(°) | 45 | — |
| 植被指数 Vegetation index | 计算公式 Calculation formula | 参考文献 Reference |
|---|---|---|
| 归一化植被指数Normalized difference vegetation index (NDVI) | (NIR-R))/(NIR+R) | [ |
| 标准化差异红边指数Normalized difference red-edge index (NDRE) | (NIR-RE)/(NIR+RE) | [ |
| 比值植被指数Ratio vegetation index (RVI) | NIR/R | [ |
| 红边比值植被指数Red-edge ratio vegetation index (RERVI) | NIR/RE | [ |
| 植被指数Difference vegetation index (DVI) | NIR-R | [ |
| 红边差植被指数Red-edge difference vegetation index (REDVI) | NIR-RE | [ |
| 绿色植被指数Green difference vegetation index(GDVI) | NIR-G | [ |
| 红边绿差植被指数Red edge green difference vegetation index (REGDVI) | RE-G | [ |
| 绿化率植被指数Green ratio vegetation index(GRVI) | NIR/G | [ |
| 红边绿比植被指数Red edge green ration vegetation index (REGRVI) | RE/G | [ |
| 绿色归一化植被指数Green normalized difference vegetation index (GNDVI) | (NIR-G)/(NIR+G) | [ |
| 红边绿归一化差值植被指数 | (RE-G)/(RE+G) | [ |
| Red edge green normalized difference vegetation index (REGNDVI) | ||
| 增强型植被指数Enhanced vegetation index (EVI) | 2.5×(NIR-R)/(NIR+6·R-7.5·G+1)) | [ |
| 改良增强植被指数Modified enhanced vegetation index (MEVI) | 2.5×(NIR-RE)/(NIR+6·RE-7.5·G+1) | [ |
| 土壤矫正植被指数Soil-adjusted vegetation index (SAVI) | (NIR-R)/(NIR+R+0.25)+0.25 | [ |
| 土壤矫正红边指数Soil-adjusted red-edge index (SARE) | (NIR-RE)/(NIR+R+0.25)+0.25 | [ |
| 绿色叶绿素指数Green chlorophyll index (CIg) | (NIR-G)/G | [ |
| 叶绿素指数Chlorophyll index (CIre) | (NIR-RE)/RE | [ |
| 归一化水体指数Normalized difference water index (NDWI) | (NIR-SWIR)/(NIR+SWIR) | [ |
| 水分胁迫指数Moisture stress index (MSI) | SWIR/NIR | [ |
表3 用于估算小麦LAI的植被指数
Table 3 Vegetation index for estimation of wheat LAI
| 植被指数 Vegetation index | 计算公式 Calculation formula | 参考文献 Reference |
|---|---|---|
| 归一化植被指数Normalized difference vegetation index (NDVI) | (NIR-R))/(NIR+R) | [ |
| 标准化差异红边指数Normalized difference red-edge index (NDRE) | (NIR-RE)/(NIR+RE) | [ |
| 比值植被指数Ratio vegetation index (RVI) | NIR/R | [ |
| 红边比值植被指数Red-edge ratio vegetation index (RERVI) | NIR/RE | [ |
| 植被指数Difference vegetation index (DVI) | NIR-R | [ |
| 红边差植被指数Red-edge difference vegetation index (REDVI) | NIR-RE | [ |
| 绿色植被指数Green difference vegetation index(GDVI) | NIR-G | [ |
| 红边绿差植被指数Red edge green difference vegetation index (REGDVI) | RE-G | [ |
| 绿化率植被指数Green ratio vegetation index(GRVI) | NIR/G | [ |
| 红边绿比植被指数Red edge green ration vegetation index (REGRVI) | RE/G | [ |
| 绿色归一化植被指数Green normalized difference vegetation index (GNDVI) | (NIR-G)/(NIR+G) | [ |
| 红边绿归一化差值植被指数 | (RE-G)/(RE+G) | [ |
| Red edge green normalized difference vegetation index (REGNDVI) | ||
| 增强型植被指数Enhanced vegetation index (EVI) | 2.5×(NIR-R)/(NIR+6·R-7.5·G+1)) | [ |
| 改良增强植被指数Modified enhanced vegetation index (MEVI) | 2.5×(NIR-RE)/(NIR+6·RE-7.5·G+1) | [ |
| 土壤矫正植被指数Soil-adjusted vegetation index (SAVI) | (NIR-R)/(NIR+R+0.25)+0.25 | [ |
| 土壤矫正红边指数Soil-adjusted red-edge index (SARE) | (NIR-RE)/(NIR+R+0.25)+0.25 | [ |
| 绿色叶绿素指数Green chlorophyll index (CIg) | (NIR-G)/G | [ |
| 叶绿素指数Chlorophyll index (CIre) | (NIR-RE)/RE | [ |
| 归一化水体指数Normalized difference water index (NDWI) | (NIR-SWIR)/(NIR+SWIR) | [ |
| 水分胁迫指数Moisture stress index (MSI) | SWIR/NIR | [ |
| 变量 Variable | 精度 R2 | 均方根误差 RMSE | 变量 Variable | 精度 R2 | 均方根误差 RMSE | 变量 Variable | 精度 R2 | 均方根误差 RMSE |
|---|---|---|---|---|---|---|---|---|
| B | 0.251 | 1.124 | GRVI | 0.560 | 1.214 | REGNDVI3 | 0.343 | 1.130 |
| G | 0.177 | 1.274 | GNDVI | 0.547 | 1.172 | REGRVI2 | 0.298 | 1.191 |
| R | 0.373 | 1.207 | SAVI | 0.512 | 1.063 | REDVI3 | 0.286 | 1.039 |
| RE1 | 0.083 | 1.130 | RVI | 0.511 | 1.187 | REGDVI3 | 0.279 | 1.003 |
| RE2 | 0.136 | 1.000 | MTVI2 | 0.504 | 1.079 | REGNDVI2 | 0.271 | 1.151 |
| RE3 | 0.255 | 0.982 | EVI | 0.496 | 1.010 | SARE3 | 0.181 | 1.080 |
| NIR | 0.463 | 0.979 | NDVI | 0.492 | 1.132 | REGDVI2 | 0.180 | 1.023 |
| NNIR | 0.286 | 0.958 | GDVI | 0.491 | 1.003 | NDRE3 | 0.155 | 1.086 |
| SWIR1 | 0.115 | 1.333 | DVI | 0.486 | 1.002 | CIre3 | 0.153 | 1.082 |
| SWIR2 | 0.303 | 1.548 | REDVI1 | 0.484 | 1.003 | RERVI3 | 0.153 | 1.082 |
| SARE2 | 0.707 | 0.907 | SARE1 | 0.483 | 1.067 | MEVI2 | 0.087 | 1.105 |
| NDRE2 | 0.681 | 0.954 | MEVI1 | 0.483 | 1.018 | MEVI3 | 0.062 | 1.084 |
| REDVI2 | 0.678 | 0.896 | NDRE1 | 0.441 | 1.131 | REGDVI1 | 0.009 | 1.049 |
| CIre2 | 0.667 | 0.950 | CIre1 | 0.439 | 1.108 | REGRVI1 | 0.003 | 1.067 |
| RERVI2 | 0.667 | 0.950 | RERVI1 | 0.439 | 1.108 | REGNDVI1 | 0.003 | 1.066 |
| Cig | 0.560 | 1.214 | REGRVI3 | 0.365 | 1.172 |
表4 单波段反射率及植被指数与LAI相关性
Table 4 Performance of Sentinel-2 spectral variables in LAI estimation
| 变量 Variable | 精度 R2 | 均方根误差 RMSE | 变量 Variable | 精度 R2 | 均方根误差 RMSE | 变量 Variable | 精度 R2 | 均方根误差 RMSE |
|---|---|---|---|---|---|---|---|---|
| B | 0.251 | 1.124 | GRVI | 0.560 | 1.214 | REGNDVI3 | 0.343 | 1.130 |
| G | 0.177 | 1.274 | GNDVI | 0.547 | 1.172 | REGRVI2 | 0.298 | 1.191 |
| R | 0.373 | 1.207 | SAVI | 0.512 | 1.063 | REDVI3 | 0.286 | 1.039 |
| RE1 | 0.083 | 1.130 | RVI | 0.511 | 1.187 | REGDVI3 | 0.279 | 1.003 |
| RE2 | 0.136 | 1.000 | MTVI2 | 0.504 | 1.079 | REGNDVI2 | 0.271 | 1.151 |
| RE3 | 0.255 | 0.982 | EVI | 0.496 | 1.010 | SARE3 | 0.181 | 1.080 |
| NIR | 0.463 | 0.979 | NDVI | 0.492 | 1.132 | REGDVI2 | 0.180 | 1.023 |
| NNIR | 0.286 | 0.958 | GDVI | 0.491 | 1.003 | NDRE3 | 0.155 | 1.086 |
| SWIR1 | 0.115 | 1.333 | DVI | 0.486 | 1.002 | CIre3 | 0.153 | 1.082 |
| SWIR2 | 0.303 | 1.548 | REDVI1 | 0.484 | 1.003 | RERVI3 | 0.153 | 1.082 |
| SARE2 | 0.707 | 0.907 | SARE1 | 0.483 | 1.067 | MEVI2 | 0.087 | 1.105 |
| NDRE2 | 0.681 | 0.954 | MEVI1 | 0.483 | 1.018 | MEVI3 | 0.062 | 1.084 |
| REDVI2 | 0.678 | 0.896 | NDRE1 | 0.441 | 1.131 | REGDVI1 | 0.009 | 1.049 |
| CIre2 | 0.667 | 0.950 | CIre1 | 0.439 | 1.108 | REGRVI1 | 0.003 | 1.067 |
| RERVI2 | 0.667 | 0.950 | RERVI1 | 0.439 | 1.108 | REGNDVI1 | 0.003 | 1.066 |
| Cig | 0.560 | 1.214 | REGRVI3 | 0.365 | 1.172 |
| 序号 No. | 策略1 Strategy 1(SLAI) | 策略2 Strategy 2(SLAI+SCab) | 策略3 Strategy 3(SLAI-SInteraction) | 策略4 Strategy 4(SLAI+SCab-SInteraction) |
|---|---|---|---|---|
| 1 | MTVI2 | SARE1 | MTVI2 | MTVI2 |
| 2 | SAVI | NDRE1 | SAVI | SARE1 |
| 3 | NDVI | MTVI2 | NDVI | NDRE1 |
| 4 | RVI | GNDVI | RVI | SAVI |
| 5 | NDRE3 | REGNDVI3 | DVI | RVI |
| 6 | CIRE3 | REGNDVI2 | REDVI1 | SARE2 |
| 7 | RERVI3 | SAVI | REGDVI3 | GNDVI |
| 8 | DVI | RVI | SARE1 | REGNDVI3 |
| 9 | SARE3 | REGRVI2 | GDVI | REGNDVI2 |
| 10 | REDVI1 | CIRE1 | NDWI2 | REGRVI2 |
| 11 | REGDVI3 | RERVI1 | SARE3 | NDRE2 |
| 12 | MSI2 | REGRVI3 | NDRE3 | CIRE1 |
| 13 | SARE1 | NDVI | REGDVI2 | RERVI1 |
| 14 | NDWI2 | CIg | CIRE3 | CIRE2 |
| 15 | GDVI | GRVI | RERVI3 | RERVI2 |
| 16 | REGDVI2 | SARE2 | MSI2 | REGRVI3 |
| 17 | REGNDVI2 | REGRVI1 | EVI | CIg |
| 18 | REGNDVI3 | REGNDVI1 | REGNDVI2 | GRVI |
| 19 | EVI | NDRE2 | REGNDVI3 | REDVI1 |
| 20 | GNDVI | CIRE2 | GNDVI | REGRVI1 |
| 21 | MEVI1 | RERVI2 | NDRE1 | REDVI2 |
| 22 | R | REDVI2 | MEVI1 | REGNDVI1 |
| 23 | NDRE1 | REDVI1 | RE-3 | NDVI |
| 24 | RE-3 | NDRE3 | NIR | REGDVI3 |
| 25 | NIR | CIRE3 | NNIR | DVI |
| 26 | NNIR | RERVI3 | REDVI2 | GDVI |
| 27 | MSI1 | REGDVI3 | MSI1 | EVI |
| 28 | REGNDVI1 | EVI | REGNDVI1 | NDWI2 |
| 29 | REGRVI1 | DVI | NDWI1 | SARE3 |
| 30 | REDVI2 | GDVI | REGRVI1 | REGDVI2 |
表5 不同策略光谱变量排序结果
Table 5 Different strategies for sorting spectral variables
| 序号 No. | 策略1 Strategy 1(SLAI) | 策略2 Strategy 2(SLAI+SCab) | 策略3 Strategy 3(SLAI-SInteraction) | 策略4 Strategy 4(SLAI+SCab-SInteraction) |
|---|---|---|---|---|
| 1 | MTVI2 | SARE1 | MTVI2 | MTVI2 |
| 2 | SAVI | NDRE1 | SAVI | SARE1 |
| 3 | NDVI | MTVI2 | NDVI | NDRE1 |
| 4 | RVI | GNDVI | RVI | SAVI |
| 5 | NDRE3 | REGNDVI3 | DVI | RVI |
| 6 | CIRE3 | REGNDVI2 | REDVI1 | SARE2 |
| 7 | RERVI3 | SAVI | REGDVI3 | GNDVI |
| 8 | DVI | RVI | SARE1 | REGNDVI3 |
| 9 | SARE3 | REGRVI2 | GDVI | REGNDVI2 |
| 10 | REDVI1 | CIRE1 | NDWI2 | REGRVI2 |
| 11 | REGDVI3 | RERVI1 | SARE3 | NDRE2 |
| 12 | MSI2 | REGRVI3 | NDRE3 | CIRE1 |
| 13 | SARE1 | NDVI | REGDVI2 | RERVI1 |
| 14 | NDWI2 | CIg | CIRE3 | CIRE2 |
| 15 | GDVI | GRVI | RERVI3 | RERVI2 |
| 16 | REGDVI2 | SARE2 | MSI2 | REGRVI3 |
| 17 | REGNDVI2 | REGRVI1 | EVI | CIg |
| 18 | REGNDVI3 | REGNDVI1 | REGNDVI2 | GRVI |
| 19 | EVI | NDRE2 | REGNDVI3 | REDVI1 |
| 20 | GNDVI | CIRE2 | GNDVI | REGRVI1 |
| 21 | MEVI1 | RERVI2 | NDRE1 | REDVI2 |
| 22 | R | REDVI2 | MEVI1 | REGNDVI1 |
| 23 | NDRE1 | REDVI1 | RE-3 | NDVI |
| 24 | RE-3 | NDRE3 | NIR | REGDVI3 |
| 25 | NIR | CIRE3 | NNIR | DVI |
| 26 | NNIR | RERVI3 | REDVI2 | GDVI |
| 27 | MSI1 | REGDVI3 | MSI1 | EVI |
| 28 | REGNDVI1 | EVI | REGNDVI1 | NDWI2 |
| 29 | REGRVI1 | DVI | NDWI1 | SARE3 |
| 30 | REDVI2 | GDVI | REGRVI1 | REGDVI2 |
| 变量数量 Number of variables | 策略Strategy | SLAI | SLAI+SCab | SLAI-SInteraction | SLAI+SCab-SInteraction | ||||
|---|---|---|---|---|---|---|---|---|---|
| 模型Modeling | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
| 10 | GSA-PLSR | 0.69 | 0.84 | 0.69 | 0.84 | 0.69 | 0.84 | 0.70 | 0.82 |
| GSA-SVM | 0.40 | 1.17 | 0.41 | 1.16 | 0.40 | 1.17 | 0.41 | 1.16 | |
| GSA-RF | 0.91 | 0.45 | 0.90 | 0.48 | 0.91 | 0.46 | 0.92 | 0.42 | |
| 20 | GSA-PLSR | 0.76 | 0.73 | 0.75 | 0.75 | 0.76 | 0.73 | 0.79 | 0.69 |
| GSA-SVM | 0.40 | 1.17 | 0.44 | 1.13 | 0.40 | 1.17 | 0.44 | 1.13 | |
| GSA-RF | 0.92 | 0.44 | 0.92 | 0.42 | 0.92 | 0.44 | 0.92 | 0.42 | |
| 30 | GSA-PLSR | 0.87 | 0.55 | 0.93 | 0.40 | 0.88 | 0.53 | 0.92 | 0.44 |
| GSA-SVM | 0.40 | 1.17 | 0.44 | 1.12 | 0.40 | 1.16 | 0.44 | 1.12 | |
| GSA-RF | 0.93 | 0.40 | 0.93 | 0.40 | 0.94 | 0.38 | 0.94 | 0.38 | |
表6 冬小麦LAI估算模型对比
Table 6 Comparison of wheat LAI estimation by GSA-MLs
| 变量数量 Number of variables | 策略Strategy | SLAI | SLAI+SCab | SLAI-SInteraction | SLAI+SCab-SInteraction | ||||
|---|---|---|---|---|---|---|---|---|---|
| 模型Modeling | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
| 10 | GSA-PLSR | 0.69 | 0.84 | 0.69 | 0.84 | 0.69 | 0.84 | 0.70 | 0.82 |
| GSA-SVM | 0.40 | 1.17 | 0.41 | 1.16 | 0.40 | 1.17 | 0.41 | 1.16 | |
| GSA-RF | 0.91 | 0.45 | 0.90 | 0.48 | 0.91 | 0.46 | 0.92 | 0.42 | |
| 20 | GSA-PLSR | 0.76 | 0.73 | 0.75 | 0.75 | 0.76 | 0.73 | 0.79 | 0.69 |
| GSA-SVM | 0.40 | 1.17 | 0.44 | 1.13 | 0.40 | 1.17 | 0.44 | 1.13 | |
| GSA-RF | 0.92 | 0.44 | 0.92 | 0.42 | 0.92 | 0.44 | 0.92 | 0.42 | |
| 30 | GSA-PLSR | 0.87 | 0.55 | 0.93 | 0.40 | 0.88 | 0.53 | 0.92 | 0.44 |
| GSA-SVM | 0.40 | 1.17 | 0.44 | 1.12 | 0.40 | 1.16 | 0.44 | 1.12 | |
| GSA-RF | 0.93 | 0.40 | 0.93 | 0.40 | 0.94 | 0.38 | 0.94 | 0.38 | |
| 机器学习法MLs | R2 | RMSE |
|---|---|---|
| PLSR | 0.81 | 0.31 |
| SVM | 0.41 | 1.06 |
| RF | 0.92 | 0.40 |
表7 MLs法估算小麦LAI的比较
Table 7 Comparison of wheat LAI estimation by MLs
| 机器学习法MLs | R2 | RMSE |
|---|---|---|
| PLSR | 0.81 | 0.31 |
| SVM | 0.41 | 1.06 |
| RF | 0.92 | 0.40 |
| 建模方法 Modeling methods | 机器学习 MLs | 全局敏感性机器学习 GSA-MLs |
|---|---|---|
| PLSR | 487.772 | 226.270 |
| SVM | 495.957 | 227.190 |
| RF | 569.327 | 261.130 |
表8 不同估算模型应用过程中的计算机运行时间
Table 8 Computer running time in the application process of different estimation models s
| 建模方法 Modeling methods | 机器学习 MLs | 全局敏感性机器学习 GSA-MLs |
|---|---|---|
| PLSR | 487.772 | 226.270 |
| SVM | 495.957 | 227.190 |
| RF | 569.327 | 261.130 |
| [1] |
ZHUO W, HUANG J X, GAO X R, et al. Prediction of winter wheat maturity dates through assimilating remotely sensed leaf area index into crop growth model[J]. Remote Sensing, 2020, 12(18): 2896.
DOI URL |
| [2] |
LI H, CHEN Z X, JIANG Z W, et al. Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat[J]. Journal of Integrative Agriculture, 2017, 16(2): 266-285.
DOI URL |
| [3] |
DONG T F, LIU J G, SHANG J L, et al. Assessment of red-edge vegetation indices for crop leaf area index estimation[J]. Remote Sensing of Environment, 2019, 222: 133-143.
DOI URL |
| [4] |
HOJAS GASCÓN L, CECCHERINI G, GARCÍA HARO F, et al. The potential of high resolution (5 m) RapidEye optical data to estimate above ground biomass at the national level over Tanzania[J]. Forests, 2019, 10(2): 107.
DOI URL |
| [5] |
AZADBAKHT M, ASHOURLOO D, AGHIGHI H, et al. Wheat leaf rust detection at canopy scale under different LAI levels using machine learning techniques[J]. Computers and Electronics in Agriculture, 2019, 156: 119-128.
DOI URL |
| [6] |
PADALIA H, SINHA S K, BHAVE V, et al. Estimating canopy LAI and chlorophyll of tropical forest plantation (North India) using Sentinel-2 data[J]. Advances in Space Research, 2020, 65(1): 458-469.
DOI URL |
| [7] |
CUI B, ZHAO Q J, HUANG W J, et al. Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2 and EnMAP data[J]. Journal of Integrative Agriculture, 2019, 18(6): 1230-1245.
DOI |
| [8] |
ESTÉVEZ J, VICENT J, RIVERA-CAICEDO J P, et al. Gaussian processes retrieval of LAI from Sentinel-2 top-of-atmosphere radiance data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 289-304.
DOI URL |
| [9] | 王丽爱, 周旭东, 朱新开, 等. 基于HJ-CCD数据和随机森林算法的小麦叶面积指数反演[J]. 农业工程学报, 2016, 32(3): 149-154. |
| WANG L A, ZHOU X D, ZHU X K, et al. Inverting wheat leaf area index based on HJ-CCD remote sensing data and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 149-154. (in Chinese with English abstract) | |
| [10] |
LI X C, ZHANG Y J, LUO J H, et al. Quantification winter wheat LAI with HJ-1CCD image features over multiple growing seasons[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 44: 104-112.
DOI URL |
| [11] |
WANG L, CHANG Q R, LI F L, et al. Effects of growth stage development on paddy rice leaf area index prediction models[J]. Remote Sensing, 2019, 11(3): 361.
DOI URL |
| [12] |
ABDEL-RAHMAN E M, AHMED F B, ISMAIL R. Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data[J]. International Journal of Remote Sensing, 2013, 34(2): 712-728.
DOI URL |
| [13] |
FANG H L, BARET F, PLUMMER S, et al. An overview of global leaf area index (LAI): methods, products, validation, and applications[J]. Reviews of Geophysics, 2019, 57(3): 739-799.
DOI URL |
| [14] |
DE LOS CAMPOS G, GIANOLA D, ROSA G J M. Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation[J]. Journal of Animal Science, 2009, 87(6): 1883-1887.
DOI PMID |
| [15] | SOBOL I. On sensitivity estimation for nonlinear mathematical models[J]. Matem Modelirovanie, 1990, 2(1): 112-118. |
| [16] |
SALTELLI A. Sensitivity analysis: Could better methods be used?[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D3): 3789-3793.
DOI URL |
| [17] |
SUN Y H, QIN Q M, REN H Z, et al. Red-edge band vegetation indices for leaf area index estimation from sentinel-2/MSI imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 826-840.
DOI URL |
| [18] |
CHEN H Y, HUANG W J, LI W, et al. Estimation of LAI in winter wheat from multi-angular hyperspectral VNIR data: effects of view angles and plant architecture[J]. Remote Sensing, 2018, 10(10): 1630.
DOI URL |
| [19] |
TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150.
DOI URL |
| [20] |
SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2/3): 337-354.
DOI URL |
| [21] |
BASSO M, STOCCHERO D, VENTURA BAYAN HENRIQUES R, et al. Proposal for an embedded system architecture using a GNDVI algorithm to support UAV-based agrochemical spraying[J]. Sensors, 2019, 19(24): 5397.
DOI URL |
| [22] | VINCINI M, FRAZZI E. Active sensing of the N status of wheat using optimized wavelength combination: impact of seed rate, variety and growth stage[J]. Precision Agriculture, 2009. |
| [23] |
JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663-666.
DOI URL |
| [24] |
BUSCHMANN C, NAGEL E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation[J]. International Journal of Remote Sensing, 1993, 14(4): 711-722.
DOI URL |
| [25] |
ZHANG H X, LI Q Z, LIU J G, et al. Corrections to “image classification using RapidEye data: integration of spectral and textual features in a random forest classifier” [DEC 17 5334-5349][J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2571.
DOI URL |
| [26] |
JIANG Z Y, HUETE A R, DIDAN K, et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote Sensing of Environment, 2008, 112(10): 3833-3845.
DOI URL |
| [27] |
JUSTICE C O, VERMOTE E, TOWNSHEND J R G, et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1228-1249.
DOI URL |
| [28] |
HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.
DOI URL |
| [29] |
ALI M, MONTZKA C, STADLER A, et al. Estimation and validation of RapidEye-based time-series of leaf area index for winter wheat in the rur catchment (Germany)[J]. Remote Sensing, 2015, 7(3): 2808-2831.
DOI URL |
| [30] |
CLEVERS J, KOOISTRA L, VAN DEN BRANDE M. Using sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop[J]. Remote Sensing, 2017, 9(5): 405.
DOI URL |
| [31] |
GAO B C. NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3): 257-266.
DOI URL |
| [32] |
DORAISWAMY P C, THOMPSON D R. A crop moisture stress index for large areas and its application in the prediction of spring wheat phenology[J]. Agricultural Meteorology, 1982, 27(1/2): 1-15.
DOI URL |
| [33] |
NANNI M R, CEZAR E, SILVA JUNIOR C A D, et al. Partial least squares regression (PLSR) associated with spectral response to predict soil attributes in transitional lithologies[J]. Archives of Agronomy and Soil Science, 2018, 64(5): 682-695.
DOI URL |
| [34] | 翁永玲, 戚浩平, 方洪宾, 等. 基于PLSR方法的青海茶卡-共和盆地土壤盐分高光谱遥感反演[J]. 土壤学报, 2010, 47(6): 1255-1263. |
| WENG Y L, QI H P, FANG H B, et al. PLSR-based hyperspectral remote sensing retrieval of soil salinity of Chaka-Gonghe basin in Qinghai Province[J]. Acta Pedologica Sinica, 2010, 47(6): 1255-1263. (in Chinese with English abstract) | |
| [35] | VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 1999. |
| [36] | BUHMANN M D. Radial basis functions[M]. Cambridge: Cambridge University Press, 2003. |
| [37] |
LIANG L, QIN Z H, ZHAO S H, et al. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method[J]. International Journal of Remote Sensing, 2016, 37(13): 2923-2949.
DOI URL |
| [38] |
MENG X T, BAO Y L, LIU J G, et al. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 89: 102111.
DOI URL |
| [39] |
HOUBORG R, MCCABE M F. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135: 173-188.
DOI URL |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 吴昊霖, 王淑珍, 朱祝军, 何勇. 基于近红外光谱技术和机器学习模型的基质氮含量快速检测[J]. 浙江农业学报, 2025, 37(5): 1159-1171. |
| [3] | 刘胜男, 朱建义, 李明, 赵浩宇, 熊涛, 汤永禄, 周小刚, 李朝苏. 稻茬免耕带旋播种小麦的田间杂草防除效果与小麦产量[J]. 浙江农业学报, 2025, 37(10): 2129-2137. |
| [4] | 杨晓雨, 马指挥, 魏青, 牛志鹏, 陈安琪, 胡正冲, 王林生. 一个小麦芒长基因的初步定位及候选基因预测[J]. 浙江农业学报, 2025, 37(1): 14-23. |
| [5] | 沈峥嵘, 戴远兴, 郭留明, 汪芷瑶, 张恒木. 中国小麦花叶病毒(CWMV)外壳蛋白(CP)特异性抗体的制备与应用[J]. 浙江农业学报, 2024, 36(9): 2042-2050. |
| [6] | 齐学礼, 李莹, 段俊枝. 耐盐基因在小麦耐盐基因工程中的应用[J]. 浙江农业学报, 2024, 36(6): 1447-1457. |
| [7] | 李晶晶, 李闯, 路亚南, 郑文明. 小麦类硫素基因家族鉴定及表达分析[J]. 浙江农业学报, 2024, 36(4): 729-737. |
| [8] | 张永彬, 李想, 满卫东, 刘明月, 樊继好, 胡皓然, 宋利杰, 刘玮佳. 融合Sentinel-1/2数据和机器学习算法的冬小麦产量估算方法研究[J]. 浙江农业学报, 2024, 36(12): 2812-2822. |
| [9] | 刘永安, 黄业昌, 岳高红, 高锡腾, 邓立章, 潘彬荣. 优质小麦品种温麦10号籽粒蛋白质组学分析[J]. 浙江农业学报, 2024, 36(11): 2437-2446. |
| [10] | 周丽丽, 冯海宽, 聂臣巍, 许晓斌, 刘媛, 孟麟, 薛贝贝, 明博, 梁齐云, 苏涛, 金秀良. 无人机观测时间对玉米冠层叶绿素密度估算的影响[J]. 浙江农业学报, 2024, 36(1): 18-31. |
| [11] | 娄渊根, 李闯, 李晶晶, 邢国珍, 路亚南, 郑文明. 小麦HP基因家族鉴定和分析[J]. 浙江农业学报, 2023, 35(9): 2023-2032. |
| [12] | 余桂红, 宋桂成, 张鹏, 王化敦, 范祥云. 十八个小麦品种(系)拔节期耐渍性的综合评价[J]. 浙江农业学报, 2023, 35(6): 1235-1242. |
| [13] | 杨凯, 陈凯, 李红梅, 赵忠娟, 扈进冬, 李纪顺, 杨合同. 哈茨木霉LTR-2与产脲节杆菌DnL1-1协同对小麦茎基腐病的防治效果与机理[J]. 浙江农业学报, 2023, 35(6): 1385-1395. |
| [14] | 任开明, 王犇, 杨文俊, 樊永惠, 张文静, 马尚宇, 黄正来. 施氮对稻茬弱筋小麦生长特性、品质与产量的影响[J]. 浙江农业学报, 2023, 35(4): 769-779. |
| [15] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||