浙江农业学报 ›› 2025, Vol. 37 ›› Issue (1): 14-23.DOI: 10.3969/j.issn.1004-1524.20240253
杨晓雨1,2(), 马指挥1,2, 魏青1,2, 牛志鹏1,2, 陈安琪1,2, 胡正冲1,2, 王林生1,2,*(
)
收稿日期:
2024-03-18
出版日期:
2025-01-25
发布日期:
2025-02-14
作者简介:
杨晓雨(1999—),女,安徽阜阳人,硕士研究生,主要从事小麦遗传育种研究。E-mail:a18712563532@163.com
通讯作者:
*王林生,E-mail:wls282059@haust.edu.cn
基金资助:
YANG Xiaoyu1,2(), MA Zhihui1,2, WEI Qing1,2, NIU Zhipeng1,2, CHEN Anqi1,2, HU Zhengchong1,2, WANG Linsheng1,2,*(
)
Received:
2024-03-18
Online:
2025-01-25
Published:
2025-02-14
摘要: 小麦芒作为影响产量和抗逆性的重要农艺性状引起了许多小麦遗传改良工作者的广泛关注。本文以藁优2018(全芒)与科大102(顶芒)及其构建的F2分离群体为试验材料,在小麦抽穗期对其主要农艺性状进行统计分析,并利用SSR分子标记对小麦芒长基因进行初步定位。结果表明,小麦顶芒对全芒为显性单基因遗传,符合孟德尔分离规律。采用Joinmap4.0软件对芒长基因进行遗传连锁图谱的构建,最终目的基因被初步定位在5A染色体长臂末端的yzu443936和yzu454712两个标记之间。将这两个标记的引物序列与中国春V2.1基因组进行比对,得到两个标记间的物理距离为6.74 Mb ( 668.45~675.19 Mb)。通过IWGSC网站在该区间内共筛选到86个基因,其中有17个基因可能为调控芒长的候选基因。本研究结果可以为小麦芒长基因的精细定位及基因克隆提供理论基础。
中图分类号:
杨晓雨, 马指挥, 魏青, 牛志鹏, 陈安琪, 胡正冲, 王林生. 一个小麦芒长基因的初步定位及候选基因预测[J]. 浙江农业学报, 2025, 37(1): 14-23.
YANG Xiaoyu, MA Zhihui, WEI Qing, NIU Zhipeng, CHEN Anqi, HU Zhengchong, WANG Linsheng. Preliminary mapping of a wheat awn length gene and prediction of candidate genes[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 14-23.
图2 亲本及混池多态性 P1,科大102;P2,藁优2018;M,Marker;池1,全芒池;池2,顶芒池。
Fig.2 Parental and mixed-pool polymorphism screening P1, Keda 102; P2, Gaoyou 2018; M, Marker; Pool 1, Full awned pool; Pool 2, Top awned pool.
图3 标记yzu443936在F2群体中的多样性 P1,科大102;P2,藁优2018;M,Marker;1~27为F2代部分群体。
Fig.3 Diversity of yzu443936 in F2 population P1, Keda102; P2, Gaoyou 2018; M, Marker; 1-27, Part population of F2 generation.
标记 Marker | 染色体 Chr | 引物序列 Sequence (5'-3') | 退火温度 Tm/℃ |
---|---|---|---|
yzu443936 | 5A | F:CCGGCAATACTCACCTCTTT | 59 |
R:GCTAGCGTTCTGCTGTCCTT | |||
yzu454712 | 5A | F:TACCACCGATTGATGCTTGA | 60 |
R:CCGCTAGGGACATATCGAAG | |||
yzu460465 | 5A | F:AGAGTATTGCGGCCAGCTTA | 60 |
R:ATCCTACAGCCCCACCCTAT |
表1 表现多态性差异的3对SSR引物
Table 1 Three pairs of SSR primers showing polymorphism differences
标记 Marker | 染色体 Chr | 引物序列 Sequence (5'-3') | 退火温度 Tm/℃ |
---|---|---|---|
yzu443936 | 5A | F:CCGGCAATACTCACCTCTTT | 59 |
R:GCTAGCGTTCTGCTGTCCTT | |||
yzu454712 | 5A | F:TACCACCGATTGATGCTTGA | 60 |
R:CCGCTAGGGACATATCGAAG | |||
yzu460465 | 5A | F:AGAGTATTGCGGCCAGCTTA | 60 |
R:ATCCTACAGCCCCACCCTAT |
基因序列号Gene ID | 注释信息Annotation | 物理位置Physical position/bp |
---|---|---|
TraesCS5A03G1219200 | Post-GPI attachment to proteins factor 3 | 684 710 738~684 713 456 |
TraesCS5A03G1219400 | — | 684 902 731~684 903 105 |
TraesCS5A03G1219900 | Copper transport protein 86 | 685 124 674~685 127 733 |
TraesCS5A03G1220200 | — | 685 156 738~685 159 437 |
TraesCS5A03G1220800 | Probable low-specificity L-threonine aldolase 1 | 685 405 389~685 408 368 |
TraesCS5A03G1224200 | Peroxisomal membrane protein 11-1 | 686 771 813~686 774 194 |
TraesCS5A03G1225300 | F-box protein At4g00755 | 687 299 524~687 304 202 |
TraesCS5A03G1226300 | Defensin-like protein | 687 631 077~687 631 292 |
TraesCS5A03G1227500 | RHOMBOID-like protein 2 | 687 747 729~687 750 510 |
TraesCS5A03G1230400 | Mitochondrial inner membrane protein OXA1 | 689 537 887~689 543 316 |
TraesCS5A03G1232600 | CASP-like protein 5B3 | 690 097 794~690 100 067 |
TraesCS5A03G1235400 | Phosphoglucan phosphatase DSP4, amyloplastic | 690 618 114~690 623 247 |
TraesCS5A03G1237100 | — | 690 817 727~690 820 259 |
TraesCS5A03G1237500 | Major pollen allergen Hol l 1 | 690 844 500~690 845 663 |
TraesCS5A03G1238000 | Pollen allergen Dac g 3 (Fragment) | 691 032 197~691 032 592 |
TraesCS5A03G1228900 | — | 689 010 955~689 013 189 |
TraesCS5A03G1227400 | COP9 signalosome complex subunit 1 | 687 741 228~687 747 570 |
表2 小麦5A染色体yzu454712-yzu443936标记之间候选基因预测
Table 2 Prediction of candidate genes between yzu454712-yzu443936 markers on chromosome 5A of wheat
基因序列号Gene ID | 注释信息Annotation | 物理位置Physical position/bp |
---|---|---|
TraesCS5A03G1219200 | Post-GPI attachment to proteins factor 3 | 684 710 738~684 713 456 |
TraesCS5A03G1219400 | — | 684 902 731~684 903 105 |
TraesCS5A03G1219900 | Copper transport protein 86 | 685 124 674~685 127 733 |
TraesCS5A03G1220200 | — | 685 156 738~685 159 437 |
TraesCS5A03G1220800 | Probable low-specificity L-threonine aldolase 1 | 685 405 389~685 408 368 |
TraesCS5A03G1224200 | Peroxisomal membrane protein 11-1 | 686 771 813~686 774 194 |
TraesCS5A03G1225300 | F-box protein At4g00755 | 687 299 524~687 304 202 |
TraesCS5A03G1226300 | Defensin-like protein | 687 631 077~687 631 292 |
TraesCS5A03G1227500 | RHOMBOID-like protein 2 | 687 747 729~687 750 510 |
TraesCS5A03G1230400 | Mitochondrial inner membrane protein OXA1 | 689 537 887~689 543 316 |
TraesCS5A03G1232600 | CASP-like protein 5B3 | 690 097 794~690 100 067 |
TraesCS5A03G1235400 | Phosphoglucan phosphatase DSP4, amyloplastic | 690 618 114~690 623 247 |
TraesCS5A03G1237100 | — | 690 817 727~690 820 259 |
TraesCS5A03G1237500 | Major pollen allergen Hol l 1 | 690 844 500~690 845 663 |
TraesCS5A03G1238000 | Pollen allergen Dac g 3 (Fragment) | 691 032 197~691 032 592 |
TraesCS5A03G1228900 | — | 689 010 955~689 013 189 |
TraesCS5A03G1227400 | COP9 signalosome complex subunit 1 | 687 741 228~687 747 570 |
[1] | LI X J, WANG H G, LI H B, et al. Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum)[J]. Physiologia Plantarum, 2006, 127(4): 701-709. |
[2] | 蔡文华, 裴建文. 小麦芒对产量构成因素的影响[J]. 甘肃农业科技, 1986, 17(5): 5-7. |
CAI W H, PEI J W. Effects of wheat and awn on yield components[J]. Gansu Agricultural Science and Technology, 1986, 17(5): 5-7. (in Chinese) | |
[3] | 陈培元, 李英. 小麦芒的功能及去芒对籽粒重的影响[J]. 作物学报, 1981, 7(4): 279-282. |
CHEN P Y, LI Y. The effect of wheat awns on grain weight and thier physiological function[J]. Acta Agronomica Sinica, 1981, 7(4): 279-282. (in Chinese with English abstract) | |
[4] | 吴鹏. 芒对小麦种子增重作用与其叶绿素含量关系的研究[J]. 种子, 1985, 4(5): 5-8. |
WU P. Study on the effect of awns on wheat seed weight gain and its chlorophyll content[J]. Seed, 1985, 4(5): 5-8. (in Chinese) | |
[5] | 冯朝章, 余泽高. 小麦冠层叶片和芒对产量因素的影响[J]. 湖北农学院学报, 1994(1): 1-7. |
FENG C Z, YU Z G. Effects of canopy leaves and awns on yield components in wheat[J]. Journal of Hubei Agricultural College, 1994(1): 1-7. (in Chinese) | |
[6] | 杨兆生, 许红霞, 梁文科. 小麦叶片、穗、芒对粒重的作用及品种间效应的研究[J]. 麦类作物学报, 1995, 15(4): 38-39. |
YANG Z S, XU H X, LIANG W K. Effects of leaf, ear and awns on grain weight and intervarietal effects of wheat[J]. Journal of Triticeae Crops, 1995, 15(4): 38-39. (in Chinese) | |
[7] | 王瑞清, 闫志顺, 杨继芝, 等. 冬小麦穗、穗下节、芒对籽粒重的影响[J]. 塔里木农垦大学学报, 2003, 15(4): 20-22. |
WANG R Q, YAN Z S, YANG J Z, et al. Effects of ear, lower ear and awn on grain weight of winter wheat[J]. Journal of Tarim University of Agricultural Reclamation, 2003, 15(4): 20-22. (in Chinese) | |
[8] | BISCOE P V, LITTLETON E J, SCOTT R K. Stomatal control of gas exchange in barley awns[J]. Annals of Applied Biology, 1973, 75(2): 285-297. |
[9] | BLUM A. Photosynthesis and transpiration in leaves and ears of wheat and barley varieties[J]. Journal of Experimental Botany, 1985, 36(3): 432-440. |
[10] | RAI K N, RAO A S. Effect of d2 dwarfing gene on grain yield and yield components in pearl millet near-isogenic lines[J]. Euphytica, 1991, 52(1): 25-31. |
[11] | MOTZO R, GIUNTA F. Awnedness affects grain yield and kernel weight in near-isogenic lines of durum wheat[J]. Australian Journal of Agricultural Research, 2002, 53(12): 1285. |
[12] | KING R W, RICHARDS R A. Water uptake in relation to pre-harvest sprouting damage in wheat: ear characteristics[J]. Australian Journal of Agricultural Research, 1984, 35(3): 327. |
[13] | MESTERHÁZY A. Types and components of resistance to Fusarium head blight of wheat[J]. Plant Breeding, 1995, 114(5): 377-386. |
[14] | WHALEY J M, KIRBY E J M, SPINK J H, et al. Frost damage to winter wheat in the UK: the effect of plant population density[J]. European Journal of Agronomy, 2004, 21(1): 105-115. |
[15] | 蒋钰婕. 利用KASP标记定位小麦中国春无芒位点Awn-4A.1[D]. 杨凌: 西北农林科技大学, 2020. |
JIANG Y J. Location of Awn-4A.1 in Chinese spring awn-free wheat using KASP markers[D]. Yangling: Northwest A & F University, 2020. (in Chinese with English abstract) | |
[16] | DEWITT N, GUEDIRA M, LAUER E, et al. Sequence-based mapping identifies a candidate transcription repressor underlying awn suppression at the B1 locus in wheat[J]. New Phytologist, 2020, 225(1): 326-339. |
[17] | 杜斌. 小麦芒长抑制基因B1近等基因系的鉴定及遗传分析[D]. 泰安: 山东农业大学, 2010. |
DU B. Identification and genetic analysis of near-isogenic line of wheat awn growth suppressor B1[D]. Taian: Shandong Agricultural University, 2010. (in Chinese with English abstract) | |
[18] | 王冬至, 余慷, 孙林鹤, 等. 小麦芒长抑制基因B1的精细定位[C]// 中国作物学会.2017年中国作物学会学术年会摘要集. 2017: 61. |
[19] | LI L, SUN F Y, WU D, et al. High-throughput development of genome-wide locus-specific informative SSR markers in wheat[J]. Science China Life Sciences, 2017, 60(6): 671-673. |
[20] | 夏豫川, 周胜芳, 刘钰, 等. 石斛的遗传连锁图谱构建及QTL定位研究进展[J]. 分子植物育种, 2022, 20(11): 3730-3736. |
XIA Y C, ZHOU S F, LIU Y, et al. Research progress on genetic linkage map construction and QTL mapping of Dendrobium[J]. Molecular Plant Breeding, 2022, 20(11): 3730-3736. (in Chinese with English abstract) | |
[21] | 耿君佑, 陈建辉, 董中东, 等. 小麦芒性基因的定位与候选基因分析[J]. 植物遗传资源学报, 2021, 22(4): 1090-1098. |
GENG J Y, CHEN J H, DONG Z D, et al. Mapping and candidate gene analysis of awn type in common wheat[J]. Journal of Plant Genetic Resources, 2021, 22(4): 1090-1098. (in Chinese with English abstract) | |
[22] | 陈真真, 周国勤, 陈金平, 等. 小麦芒长近等基因系的表型及遗传分析[J]. 湖北农业科学, 2023, 62(10): 5-8, 21. |
CHEN Z Z, ZHOU G Q, CHEN J P, et al. Phenotypic and genetic analysis of wheat near-isogenic lines in awn length[J]. Hubei Agricultural Sciences, 2023, 62(10): 5-8, 21. (in Chinese with English abstract) | |
[23] | 金迪, 王冬至, 王焕雪, 等. 小麦芒长抑制基因B2的精细定位与候选基因分析[J]. 作物学报, 2019, 45(6): 807-817. |
JIN D, WANG D Z, WANG H X, et al. Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat[J]. Acta Agronomica Sinica, 2019, 45(6): 807-817. (in Chinese with English abstract) | |
[24] | 杜斌, 崔法, 王洪刚, 等. 小麦芒长抑制基因B1近等基因系的鉴定及遗传分析[J]. 分子植物育种, 2010, 8(2): 259-264. |
DU B, CUI F, WANG H G, et al. Characterization and genetic analysis of near-isogenic lines of common wheat for awn-inhibitor gene B1[J]. Molecular Plant Breeding, 2010, 8(2): 259-264. (in Chinese with English abstract) | |
[25] | 高亚男. 小麦芒长近等基因系的遗传分析与转录组研究[D]. 泰安: 山东农业大学, 2015. |
GAO Y N. Genetic analysis and transcriptome study of near-isogenic lines of wheat awn length[D]. Taian: Shandong Agricultural University, 2015. (in Chinese with English abstract) | |
[26] | HUANG D Q, ZHENG Q, MELCHKART T, et al. Dominant inhibition of awn development by a putative zinc-finger transcriptional repressor expressed at the B1 locus in wheat[J]. New Phytologist, 2020, 225(1): 340-355. |
[27] | 张传量, 简俊涛, 冯洁, 等. 基于90K芯片标记的小麦芒长QTL定位[J]. 中国农业科学, 2018, 51(1): 17-26. |
ZHANG C L, JIAN J T, FENG J, et al. QTL identification for awn length based on 90K array mapping in wheat[J]. Scientia Agricultura Sinica, 2018, 51(1): 17-26. (in Chinese with English abstract) | |
[28] | 黄瑾, 骆惠生, 张勃, 等. 普通小麦芒的遗传分析[J]. 甘肃农业科技, 2011, 42(2): 11-12. |
HUANG J, LUO H S, ZHANG B, et al. Genetic analysis of mount of common wheat[J]. Gansu Agricultural Science and Technology, 2011, 42(2): 11-12. (in Chinese with English abstract) | |
[29] | 王彦梅, 安调过, 王志国, 等. “高优503” 小麦芒基因染色体定位[J]. 生态农业研究, 2000, 8(4): 31-33. |
WANG Y M, AN D G, WANG Z G, et al. A monosomic analysis of the awness gene of wheat variety Gaoyou503[J]. Chinese Journal of Eco-Agriculture, 2000, 8(4): 31-33. (in Chinese with English abstract) | |
[30] | 欧巧明, 崔文娟, 李忠旺, 等. 小麦持久条锈病抗源品种89144(BJ144)芒性状遗传分析[J]. 甘肃农业科技, 2020, 51(10): 31-34. |
OU Q M, CUI W J, LI Z W, et al. Genetic analysis of awn traits of enduring rust-resistant wheat cultivar resources 89144(BJ144)[J]. Gansu Agricultural Science and Technology, 2020, 51(10): 31-34. (in Chinese with English abstract) | |
[31] | 赫丽飞, 周仲乐, 马春婕, 等. 植物铜转运蛋白结构、功能及调控机制[J]. 中国细胞生物学学报, 2022, 44(12): 2411-2420. |
HE L F, ZHOU Z L, MA C J, et al. Structure, function and regulatory mechanism of COPT in plants[J]. Chinese Journal of Cell Biology, 2022, 44(12): 2411-2420. (in Chinese with English abstract) | |
[32] | 孙艳雨, 张金羽, 郭东林. 植物铜转运蛋白研究进展及其应用价值[J]. 分子植物育种, 2021, 19(12): 4014-4023. |
SUN Y Y, ZHANG J Y, GUO D L. Advances and the application value of plant copper transporters[J]. Molecular Plant Breeding, 2021, 19(12): 4014-4023. (in Chinese with English abstract) | |
[33] | KAO Y T, GONZALEZ K L, BARTEL B. Peroxisome function, biogenesis, and dynamics in plants[J]. Plant Physiology, 2018, 176(1): 162-177. |
[34] | 张钰婵. 植物过氧化物酶体蛋白的系统挖掘及过氧化物酶体蛋白HRLP的功能机制探究[D]. 杭州: 浙江大学, 2023. |
ZHANG Y C. Systematic mining of plant peroxisome protein and functional mechanism of peroxisome protein HRLP[D]. Hangzhou: Zhejiang University, 2023. (in Chinese with English abstract) | |
[35] | LI X H, WANG Y H, DUAN E C, et al. OPEN GLUME1: a key enzyme reducing the precursor of JA, participates in carbohydrate transport of lodicules during anthesis in rice[J]. Plant Cell Reports, 2018, 37(2): 329-346. |
[36] | YOU X M, ZHU S S, ZHANG W W, et al. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis[J]. New Phytologist, 2019, 224(2): 712-724. |
[37] | 刘杨杨. 拟南芥Armadillo蛋白ZAK IXIK与F-box蛋白SAP相互作用参与花器官发育[D]. 北京: 中国农业大学, 2017. |
LIU Y Y. Interaction between Arabidopsis Armadillo protein ZAK IXIK and F-box protein SAP is involved in flower organ development[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract) |
[1] | 栾海业, 朱琳洁, 李钰, 孟炜, 刘雨倩, 徐肖, 刘方方, 沈会权. 大麦籽粒相关性状全基因组关联分析[J]. 浙江农业学报, 2024, 36(5): 997-1002. |
[2] | 蔡诗怡, 虞慧芳, 王建升, 祝彪, 沈钰森, 顾宏辉, 盛小光. 花椰菜“坐球高度”性状的主基因+多基因遗传分析[J]. 浙江农业学报, 2024, 36(3): 527-533. |
[3] | 李艳艳, 卜建华, 韩丽云, 王川川, 母童. 奶牛乳脂代谢关键候选基因的鉴定与功能分析[J]. 浙江农业学报, 2023, 35(12): 2794-2808. |
[4] | 郎春秀, 刘仁虎, 郑滔, 王伏林, 石江华, 胡张华, 吴关庭. 化学诱变获得甘蓝型油菜矮秆突变新种质[J]. 浙江农业学报, 2023, 35(11): 2516-2524. |
[5] | 钟丽萍, 王尖, 吴晓花, 汪颖, 吴新义, 汪宝根, 鲁忠富, 王华森, 李国景. 基于MAGIC群体瓠瓜白粉病抗性的全基因组关联分析[J]. 浙江农业学报, 2023, 35(10): 2398-2407. |
[6] | 郑文寅, 曾令楠, 程颖, 侯丞志, 曹文昕, 赵莉, 姚大年. 小麦籽粒类胡萝卜素含量的遗传分析[J]. 浙江农业学报, 2022, 34(10): 2088-2094. |
[7] | 赵珂, 李秋荣, 侯璐, 白耀博, 蒋礼玲, 魏有海, 郭青云. 2份春小麦种质资源成株期抗条锈病基因遗传分析[J]. 浙江农业学报, 2021, 33(4): 595-601. |
[8] | 贾小平, 王振山, 朱学海, 杨德智, 寇淑君, 刘星星. 糜子矮秆突变体“819”矮秆基因的遗传学分析[J]. 浙江农业学报, 2020, 32(1): 20-27. |
[9] | 张雅莉, 王林生. 普通小麦大赖草易位系T3AS·3AL-7Lr#1S的分子细胞遗传学鉴定[J]. 浙江农业学报, 2019, 31(4): 519-524. |
[10] | 张可鑫, 戴冬洋, 王浩男, 蔚明月, 盛云燕. 甜瓜种子相关性状遗传规律与QTL分析[J]. 浙江农业学报, 2018, 30(9): 1496-1503. |
[11] | 魏溪涓1,2,张小明3,王芳2,邓敏娟2,*,易可可2. 水稻油菜素内酯不敏感且闭花授粉突变体的遗传分析和基因定位[J]. 浙江农业学报, 2015, 27(8): 1317-. |
[12] | 王晓杜1,镡忠斌1,王鲁彦1, 何珂1,李开桢2,潘清煜2,*,周圻1,*. 猪繁殖与呼吸综合征的抗病育种研究进展 [J]. 浙江农业学报, 2014, 26(5): 1394-. |
[13] | 翟国伟1,邹桂花1,严松2,王华1,邵健丰1,陶跃之1. 影响高粱茎秆汁液含量基因的精细定位[J]. 浙江农业学报, 2014, 26(4): 856-. |
[14] | 纪现军;叶胜海;周涯;修芬连;邓晓梅;尚海漩;刘继云;陈萍萍;金庆生;张小明;* . 3个水稻叶色突变体的遗传分析及基因定位[J]. , 2012, 24(1): 0-11. |
[15] | 李克磊;汪得凯;*;陶跃之. 一个矮秆多分蘖突变体的遗传分析和定位[J]. , 2010, 22(1): 0-5. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||