浙江农业学报 ›› 2024, Vol. 36 ›› Issue (6): 1447-1457.DOI: 10.3969/j.issn.1004-1524.20230991
收稿日期:2023-08-21
出版日期:2024-06-25
发布日期:2024-07-02
通讯作者:
*段俊枝,E-mail:junzhi2004@163.com
基金资助:
QI Xueli1(
), LI Ying2, DUAN Junzhi3,*(
)
Received:2023-08-21
Online:2024-06-25
Published:2024-07-02
摘要:
小麦是重要的粮食作物,盐害严重影响小麦的生长发育,降低籽粒产量和品质。利用耐盐基因通过基因工程技术提高小麦耐盐性是小麦耐盐性改良和育种的有效措施。耐盐基因主要包括调节基因(转录因子基因、蛋白激酶基因等)和功能基因。综述了转录因子基因、蛋白激酶基因和功能基因等在小麦耐盐基因工程中的应用进展,并对未来的发展方向进行了展望。
中图分类号:
齐学礼, 李莹, 段俊枝. 耐盐基因在小麦耐盐基因工程中的应用[J]. 浙江农业学报, 2024, 36(6): 1447-1457.
QI Xueli, LI Ying, DUAN Junzhi. Application of salt tolerance genes in wheat salt tolerance genetic engineering[J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1447-1457.
| [1] | WINGEN L U, WEST C, LEVERINGTON-WAITE M, et al. Wheat landrace genome diversity[J]. Genetics, 2017, 205(4): 1657-1676. |
| [2] | SYED A, SARWAR G, SHAH S H, et al. Soil salinity research in 21st century in Pakistan: its impact on availability of plant nutrients, growth and yield of crops[J]. Communications in Soil Science and Plant Analysis, 2021, 52(3): 183-200. |
| [3] | DEINLEIN U, STEPHAN A B, HORIE T, et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science, 2014, 19(6): 371-379. |
| [4] | GAO S Q, CHEN M, XIA L Q, et al. A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat[J]. Plant Cell Reports, 2009, 28(2): 301-311. |
| [5] | 高灿. 过表达ZmTINY2和AtNACL1基因小麦的耐盐及抗旱性分析[D]. 泰安: 山东农业大学, 2020. |
| GAO C. Analysis of salt and drought tolerance of wheat overexpressing ZmTINY2 and AtNACL1 genes[D]. Tai’an: Shandong Agricultural University, 2020. (in Chinese with English abstract) | |
| [6] | JIANG Q Y, HU Z, ZHANG H, et al. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity[J]. The Crop Journal, 2014, 2(2/3): 120-131. |
| [7] | RONG W, QI L, WANG A Y, et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat[J]. Plant Biotechnology Journal, 2014, 12(4): 468-479. |
| [8] | XING L P, DI Z C, YANG W W, et al. Overexpression of ERF1-V from Haynaldia villosa can enhance the resistance of wheat to powdery mildew and increase the tolerance to salt and drought stresses[J]. Frontiers in Plant Science, 2017, 8: 1948. |
| [9] | SAAD A S I, LI X, LI H P, et al. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses[J]. Plant Science, 2013, 203: 33-40. |
| [10] | 刘晓华, 王敏琴, 夏光敏. TaCHP耐盐转基因小麦新种质创制[J]. 植物生理学报, 2013, 49(7): 671-681. |
| LIU X H, WANG M Q, XIA G M. Creation of new transgenic wheat germplasm with salt tolerance of TaCHP[J]. Plant Physiology Journal, 2013, 49(7): 671-681. (in Chinese with English abstract) | |
| [11] | CHEN L P, MENG Y, YANG W B, et al. Genome-wide analysis and identification of TaRING-H2 gene family and TaSDIR1 positively regulates salt stress tolerance in wheat[J]. International Journal of Biological Macromolecules, 2023, 242: 125162. |
| [12] | SONG Y S, YANG W J, FAN H, et al. TaMYB86B encodes a R2R3-type MYB transcription factor and enhances salt tolerance in wheat[J]. Plant Science, 2020, 300: 110624. |
| [13] | QIU D, HU W, ZHOU Y, et al. TaASR1-D confers abiotic stress resistance by affecting ROS accumulation and ABA signalling in transgenic wheat[J]. Plant Biotechnology Journal, 2021, 19(8): 1588-1601. |
| [14] | ZHANG L N, ZHAO L J, WANG L T, et al. TabZIP60 is involved in the regulation of ABA synthesis-mediated salt tolerance through interacting with TaCDPK30 in wheat (Triticum aestivum L.)[J]. Planta, 2023, 257(6): 107. |
| [15] | 张惠媛, 刘永伟, 杨军峰, 等. 小麦转录因子基因TaWRKY33的耐盐性分析[J]. 中国农业科学, 2018, 51(24): 4591-4602. |
| ZHANG H Y, LIU Y W, YANG J F, et al. Identification and analysis of salt tolerance of wheat transcription factor TaWRKY33 protein[J]. Scientia Agricultura Sinica, 2018, 51(24): 4591-4602. (in Chinese with English abstract) | |
| [16] | JIN X, SUN T, WANG X T, et al. Wheat CBL-interacting protein kinase 25 negatively regulates salt tolerance in transgenic wheat[J]. Scientific Reports, 2016, 6: 28884. |
| [17] | IMTIAZ K, AHMED M, ANNUM N, et al. AtCIPK 16, a CBL-interacting protein kinase gene, confers salinity tolerance in transgenic wheat[J]. Frontiers in Plant Science, 2023, 14: 1127311. |
| [18] | ZHENG M, LIN J C, LIU X B, et al. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat[J]. Plant Physiology, 2021, 186(4): 1951-1969. |
| [19] | 王汶龙. 小麦U-box基因TaPUB1在小麦耐盐性中的功能分析[D]. 泰安: 山东农业大学, 2019. |
| WANG W L. The functions of U-box gene TaPUB1 in plant salt tolerance of wheat[D]. Tai’an: Shandong Agricultural University, 2019. (in Chinese with English abstract) | |
| [20] | WANG W L, WANG W Q, WU Y Z, et al. The involvement of wheat U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance[J]. Journal of Integrative Plant Biology, 2020, 62(5): 631-651. |
| [21] | LEE S C, CHOI H W, HWANG I S, et al. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses[J]. Planta, 2006, 224(5): 1209-1225. |
| [22] | YIN F L, ZENG Y L, JI J Y, et al. The halophyte Halostachys caspica AP2/ERF transcription factor HcTOE3 positively regulates freezing tolerance in Arabidopsis[J]. Frontiers in Plant Science, 2021, 12: 638788. |
| [23] | CHEN K, TANG W S, ZHOU Y B, et al. AP2/ERF transcription factor GmDREB1 confers drought tolerance in transgenic soybean by interacting with GmERFs[J]. Plant Physiology and Biochemistry, 2022, 170: 287-295. |
| [24] | QU Y J, NONG Q D, JIAN S G, et al. An AP2/ERF gene, HuERF1, from pitaya (Hylocereus undatus) positively regulates salt tolerance[J]. International Journal of Molecular Sciences, 2020, 21(13): 4586. |
| [25] | NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432. |
| [26] | SAKUMA Y, LIU Q, DUBOUZET J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration-and cold-inducible gene expression[J]. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009. |
| [27] | ZHUANG J, CHEN J M, YAO Q H, et al. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum[J]. Molecular Biology Reports, 2011, 38(2): 745-753. |
| [28] | REN Y, HUANG Z Q, JIANG H, et al. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling[J]. Journal of Experimental Botany, 2021, 72(8): 2947-2964. |
| [29] | MAO C J, HE J M, LIU L N, et al. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development[J]. Plant Biotechnology Journal, 2020, 18(2): 429-442. |
| [30] | LI M, CHEN R, JIANG Q Y, et al. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean[J]. Plant Molecular Biology, 2021, 105(3): 333-345. |
| [31] | 侯思宇, 孙朝霞, 郭彬, 等. 大豆两个C2H2型转录因子基因序列特征及表达分析[J]. 植物生理学报, 2014, 50(5): 665-674. |
| HOU S Y, SUN Z X, GUO B, et al. Cloning and expression analysis of two C2H2 transcription factors in soybean[J]. Plant Physiology Journal, 2014, 50(5): 665-674. (in Chinese with English abstract) | |
| [32] | TIWARI V, CHATURVEDI A K, MISHRA A, et al. Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiate enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea)and acts as a transcription factor[J]. PLoS One, 2015, 10(7): e0131567. |
| [33] | LI J R, DONG Y, LI C, et al. SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants[J]. Frontiers in Plant Science, 2016, 7: 2053. |
| [34] | MA H Z, LIU C, LI Z X, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiology, 2018, 178(2): 753-770. |
| [35] | WANG W B, QIU X P, YANG Y X, et al. Sweetpotato bZIP transcription factor IbABF4 confers tolerance to multiple abiotic stresses[J]. Frontiers in Plant Science, 2019, 10: 630. |
| [36] | NIU S K, GU X Y, ZHANG Q, et al. Grapevine bZIP transcription factor bZIP45 regulates VvANN1 and confers drought tolerance in Arabidopsis[J]. Frontiers in Plant Science, 2023, 14: 1128002. |
| [37] | YU Q Y, AN L J, LI W L. The CBL-CIPK network mediates different signaling pathways in plants[J]. Plant Cell Reports, 2014, 33(2): 203-214. |
| [38] | KUDLA J, XU Q, HARTER K, et al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4718-4723. |
| [39] | KUDLA J, BATISTIC O, HASHIMOTO K. Calcium signals: the lead currency of plant information processing[J]. The Plant Cell, 2010, 22(3): 541-563. |
| [40] | QUAN R D, LIN H X, MENDOZA I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J]. The Plant Cell, 2007, 19(4): 1415-1431. |
| [41] | PANDEY G K, KANWAR P, SINGH A, et al. Calcineurin B-like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis[J]. Plant Physiology, 2015, 169(1): 780-792. |
| [42] | YIN X C, XIA Y Q, XIE Q, et al. The protein kinase complex CBL10-CIPK8-SOS1 functions in Arabidopsis to regulate salt tolerance[J]. Journal of Experimental Botany, 2020, 71(6): 1801-1814. |
| [43] | HAN S K, WAGNER D. Role of chromatin in water stress responses in plants[J]. Journal of Experimental Botany, 2014, 65(10): 2785-2799. |
| [44] | LIU X C, YANG S G, ZHAO M L, et al. Transcriptional repression by histone deacetylases in plants[J]. Molecular Plant, 2014, 7(5): 764-772. |
| [45] | YUAN L Y, LIU X C, LUO M, et al. Involvement of histone modifications in plant abiotic stress responses[J]. Journal of Integrative Plant Biology, 2013, 55(10): 892-901. |
| [46] | HOU H L, ZHENG X K, ZHANG H, et al. Histone deacetylase is required for GA-induced programmed cell death in maize aleurone layers[J]. Plant Physiology, 2017, 175(3): 1484-1496. |
| [47] | ZHOU S L, JIANG W, LONG F, et al. Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem[J]. The Plant Cell, 2017, 29(5): 1088-1104. |
| [48] | ZHENG Y, DING Y, SUN X, et al. Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis[J]. Journal of Experimental Botany, 2016, 67(6): 1703-1713. |
| [49] | ZHENG M, LIU X B, LIN J C, et al. Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes[J]. The Plant Journal, 2019, 97(3): 587-602. |
| [50] | LI S, LIN Y C J, WANG P Y, et al. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa[J]. The Plant Cell, 2019, 31(3): 663-686. |
| [51] | XUE Z Y, ZHI D Y, XUE G P, et al. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+[J]. Plant Science, 2004, 167(4): 849-859. |
| [52] | CHEN L H, ZHANG B, XU Z Q. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum)[J]. Transgenic Research, 2008, 17(1): 121-132. |
| [53] | MUNNS R, JAMES R A, XU B, et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene[J]. Nature Biotechnology, 2012, 30(4): 360-364. |
| [54] | BYRT C S, XU B, KRISHNAN M, et al. The Na+ transporter, TaHKT1;5-D, limits shoot Na(+) accumulation in bread wheat[J]. The Plant Journal, 2014, 80(3): 516-526. |
| [55] | MIAN A, OOMEN R J F J, ISAYENKOV S, et al. Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance[J]. The Plant Journal, 2011, 68(3): 468-479. |
| [56] | YU G H, ZHANG X, MA H X. Changes in the physiological parameters of SbPIP1-transformed wheat plants under salt stress[J]. International Journal of Genomics, 2015, 2015: 384356. |
| [57] | 余桂红, 孙晓波, 张旭, 等. 转SbPIP1基因小麦植株的获得及发芽期耐盐性鉴定[J]. 分子植物育种, 2012, 10(4): 398-403. |
| YU G H, SUN X B, ZHANG X, et al. Obtaining of transgenic wheat plants with SbPIP1 gene and preliminary assay of salt tolerance[J]. Molecular Plant Breeding, 2012, 10(4): 398-403. (in Chinese with English abstract) | |
| [58] | AYADI M, BRINI F, MASMOUDI K. Overexpression of a wheat aquaporin gene, TdPIP 2;1, enhances salt and drought tolerance in transgenic durum wheat cv. Maali[J]. International Journal of Molecular Sciences, 2019, 20(10): 2389. |
| [59] | SU P S, YAN J, LI W, et al. A member of wheat class Ⅲ peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress[J]. BMC Plant Biology, 2020, 20(1): 392. |
| [60] | 王亮. 小麦过氧化物酶基因TaPrx的遗传转化及耐旱耐盐功能鉴定[D]. 泰安: 山东农业大学, 2015. |
| WANG L. Genetic transformation of TaPrx gene in wheat and identification of its drought and salt tolerance[D]. Tai’an: Shandong Agricultural University, 2015. (in Chinese with English abstract) | |
| [61] | WANG M C, ZHAO X, XIAO Z, et al. A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity[J]. Plant Molecular Biology, 2016, 91(1/2): 115-130. |
| [62] | XIAO G L, ZHAO M M, LIU Q H, et al. TaBAS1 encoding a typical 2-Cys peroxiredoxin enhances salt tolerance in wheat[J]. Frontiers in Plant Science, 2023, 14: 1152375. |
| [63] | 刘清华. TaFLS转基因小麦耐盐能力分析[D]. 济南: 山东大学, 2021. |
| LIU Q H. Analysis of salt tolerance of TaFLS transgenic wheat[D]. Jinan: Shandong University, 2021. (in Chinese with English abstract) | |
| [64] | YANG Z F, MU Y H, WANG Y Q, et al. Characterization of a novel TtLEA2 gene from tritipyrum and its transformation in wheat to enhance salt tolerance[J]. Frontiers in Plant Science, 2022, 13: 830848. |
| [65] | HABIB I, SHAHZAD K, RAUF M, et al. Dehydrin responsive HVA1 driven inducible gene expression enhanced salt and drought tolerance in wheat[J]. Plant Physiology and Biochemistry, 2022, 180: 124-133. |
| [66] | ANWAR A, WANG K, WANG J, et al. Expression of Arabidopsis Ornithine Aminotransferase (AtOAT) encoded gene enhances multiple abiotic stress tolerances in wheat[J]. Plant Cell Reports, 2021, 40(7): 1155-1170. |
| [67] | BEN-SAAD R, BEN-RAMDHAN W, ZOUARI N, et al. Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses[J]. Molecular Breeding, 2012, 30(1): 521-533. |
| [68] | YU T F, XU Z S, GUO J K, et al. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA[J]. Scientific Reports, 2017, 7: 44050. |
| [69] | 赵红莉. 过表达ZmTDP1基因小麦的耐盐和抗旱性分析[D]. 泰安: 山东农业大学, 2020. |
| ZHAO H L. Analysis of salt tolerance and drought resistance of wheat overexpressing ZmTDP1 gene[D]. Tai’an: Shandong Agricultural University, 2020. (in Chinese with English abstract) | |
| [70] | XIONG X X, LIU Y, ZHANG L L, et al. G-protein β-subunit gene TaGB1-B enhances drought and salt resistance in wheat[J]. International Journal of Molecular Sciences, 2023, 24(8): 7337. |
| [71] | YUE W J, ZHANG H B, SUN X M, et al. The landscape of autophagy-related (ATG) genes and functional characterization of TaVAMP727 to autophagy in wheat[J]. International Journal of Molecular Sciences, 2022, 23(2): 891. |
| [72] | WANG W Q, YANG Y, DENG Y M, et al. Overexpression of isochorismate synthase enhances salt tolerance in barley[J]. Plant Physiology and Biochemistry, 2021, 162: 139-149. |
| [73] | HE C X, YAN J Q, SHEN G X, et al. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field[J]. Plant & Cell Physiology, 2005, 46(11): 1848-1854. |
| [74] | SEN A. Integrative expressional regulation of TaHKT2;1, TaNa+/H+ vacuolar antiporter, and TaSOS1 genes improve salt tolerance in gamma-ray induced bread wheat mutants[J]. Cereal Research Communications, 2021, 49(4): 599-606. |
| [75] | WANG W Y, LIU Y Q, DUAN H R, et al. SsHKT1;1 is coordinated with SsSOS1 and SsNHX1 to regulate Na+ homeostasis in Suaeda salsa under saline conditions[J]. Plant and Soil, 2020, 449(1): 117-131. |
| [76] | LI S J, WU G Q, LIN L Y. AKT1, HAK5, SKOR, HKT1;5, SOS1 and NHX1 synergistically control Na+ and K+ homeostasis in sugar beet (Beta vulgaris L.) seedlings under saline conditions[J]. Journal of Plant Biochemistry and Biotechnology, 2022, 31(1): 71-84. |
| [77] | GARCIADEBLÁS B, SENN M E, BAÑUELOS M A, et al. Sodium transport and HKT transporters: the rice model[J]. The Plant Journal, 2003, 34(6): 788-801. |
| [78] | MØLLER I S, GILLIHAM M, JHA D, et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis[J]. The Plant Cell, 2009, 21(7): 2163-2178. |
| [79] | PLETT D, SAFWAT G, GILLIHAM M, et al. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1[J]. PLoS One, 2010, 5(9): e12571. |
| [80] | MAUREL C, VERDOUCQ L, LUU D T, et al. Plant aquaporins: membrane channels with multiple integrated functions[J]. Annual Review of Plant Biology, 2008, 59: 595-624. |
| [81] | GUSTAVSSON S, LEBRUN A S, NORDÉN K, et al. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels[J]. Plant Physiology, 2005, 139(1): 287-295. |
| [82] | DANIELSON J A H, JOHANSON U. Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens[J]. BMC Plant Biology, 2008, 8: 45. |
| [83] | ISHIBASHI K, MORISHITA Y, TANAKA Y. The evolutionary aspects of aquaporin family[J]. Advances in Experimental Medicine and Biology, 2017, 969: 35-50. |
| [84] | YU J, CANG J, LU Q W, et al. ABA enhanced cold tolerance of wheat ‘dn1’ via increasing ROS scavenging system[J]. Plant Signaling & Behavior, 2020, 15(8): 1780403. |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 王小慧, 贾赛男, 冯佳宇, 尹馨悦, 刘子萱, 刘雯洁, 赵帅滢, 王姝婧, 唐跃辉. 麻风树JcMYB27基因的克隆与功能分析[J]. 浙江农业学报, 2025, 37(8): 1658-1665. |
| [3] | 李宇静, 黄倩茹, 张爱冬, 吴雪霞, 朱栋幸, 肖凯. 茄子SmMYB13基因在干旱胁迫响应中的功能[J]. 浙江农业学报, 2025, 37(8): 1666-1679. |
| [4] | 蒋明, 张胜, 陈孝赏, 张慧娟. 西兰花灰霉病响应基因BoWRKY15的克隆与功能鉴定[J]. 浙江农业学报, 2025, 37(8): 1723-1732. |
| [5] | 狄延翠, 嵇泽琳, 王媛媛, 娄世浩, 张涛, 国志信, 申顺善, 朴凤植, 杜南山, 董晓星, 董韩. 番茄SlMYB52基因鉴定、亚细胞定位及表达分析[J]. 浙江农业学报, 2025, 37(4): 808-819. |
| [6] | 杨晓雨, 马指挥, 魏青, 牛志鹏, 陈安琪, 胡正冲, 王林生. 一个小麦芒长基因的初步定位及候选基因预测[J]. 浙江农业学报, 2025, 37(1): 14-23. |
| [7] | 刘辉, 王晓蒙, 闫留延, 王永芳, 杨朋娟, 龚珂珂, 李兴杰, 董志平, 贾小平. 谷子B3转录因子可变剪切体分析[J]. 浙江农业学报, 2024, 36(9): 1969-1976. |
| [8] | 沈峥嵘, 戴远兴, 郭留明, 汪芷瑶, 张恒木. 中国小麦花叶病毒(CWMV)外壳蛋白(CP)特异性抗体的制备与应用[J]. 浙江农业学报, 2024, 36(9): 2042-2050. |
| [9] | 张鑫, 刘鹏. 植物顺式调控元件研究进展[J]. 浙江农业学报, 2024, 36(8): 1945-1956. |
| [10] | 李晶晶, 李闯, 路亚南, 郑文明. 小麦类硫素基因家族鉴定及表达分析[J]. 浙江农业学报, 2024, 36(4): 729-737. |
| [11] | 牛钰, 李晶, 王俊文, 李瑞瑞, 田强, 武玥, 郁继华. 高等植物花青素生物合成、调控、生物活性及其检测的研究进展[J]. 浙江农业学报, 2024, 36(4): 978-996. |
| [12] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
| [13] | 陈尚昱, 宋雪薇, 齐振宇, 周艳虹, 喻景权, 夏晓剑. 植物侧枝发育的遗传基础及激素、代谢与环境调控[J]. 浙江农业学报, 2024, 36(3): 690-703. |
| [14] | 张永彬, 李想, 满卫东, 刘明月, 樊继好, 胡皓然, 宋利杰, 刘玮佳. 融合Sentinel-1/2数据和机器学习算法的冬小麦产量估算方法研究[J]. 浙江农业学报, 2024, 36(12): 2812-2822. |
| [15] | 刘永安, 黄业昌, 岳高红, 高锡腾, 邓立章, 潘彬荣. 优质小麦品种温麦10号籽粒蛋白质组学分析[J]. 浙江农业学报, 2024, 36(11): 2437-2446. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||