浙江农业学报 ›› 2023, Vol. 35 ›› Issue (12): 2966-2976.DOI: 10.3969/j.issn.1004-1524.20221748
朱永基1,2(), 陶新宇1,2, 陈小芳1,2, 苏祥祥1,2, 刘吉凯1,2, 李新伟1,2,*(
)
收稿日期:
2022-12-05
出版日期:
2023-12-25
发布日期:
2023-12-27
作者简介:
朱永基(1999—),男,安徽宿州人,硕士研究生,主要从事农业遥感、作物表型监测研究。E-mail:2024177548@qq.com
通讯作者:
*李新伟,E-mail:lixw@ahstu.edu.cn
基金资助:
ZHU Yongji1,2(), TAO Xinyu1,2, CHEN Xiaofang1,2, SU Xiangxiang1,2, LIU Jikai1,2, LI Xinwei1,2,*(
)
Received:
2022-12-05
Online:
2023-12-25
Published:
2023-12-27
摘要:
为了实现对冬小麦生物量的高效无损监测,于2020—2021年间设置田间试验,利用大疆精灵4多光谱版(P4M)无人机获取冬小麦6个关键生育期的多光谱影像,对冬小麦的地上部生物量(above-ground biomass,AGB)与多光谱影像的植被指数和纹理特征进行相关性分析,筛选特征变量,并分别采用线性回归、偏最小二乘回归(partial least squares regression,PLSR)、随机森林(random forest,RF)3种方法构建基于不同特征组合的AGB估算模型。结果显示:植被指数与冬小麦AGB的相关性要高于纹理特征。将植被指数与纹理特征融合使用,在不同生育期不同算法下,均可有效地降低光谱特征的饱和现象,提升模型估算冬小麦生物量的精度。基于筛选的特征运用线性回归估算AGB时,孕穗期和成熟期的精度较好;而运用PLSR与RF估算生物量的最佳时期则是抽穗期。综上,植被指数耦合纹理特征可以有效地提高冬小麦生物量估算的效果,基于消费级无人机可在中小尺度上快速准确估算冬小麦生物量。
中图分类号:
朱永基, 陶新宇, 陈小芳, 苏祥祥, 刘吉凯, 李新伟. 基于无人机多光谱影像植被指数与纹理特征的冬小麦地上部生物量估算[J]. 浙江农业学报, 2023, 35(12): 2966-2976.
ZHU Yongji, TAO Xinyu, CHEN Xiaofang, SU Xiangxiang, LIU Jikai, LI Xinwei. Estimation of above-ground biomass of winter wheat based on vegetation indexes and texture features of multispectral images captured by unmanned aerial vehicle[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2966-2976.
指标 Index | 各时期与生物量的相关系数Coefficients of correlation with biomass at certain growth stage | |||||
---|---|---|---|---|---|---|
拔节期 Jointing stage | 孕穗期 Booting stage | 抽穗期 Heading stage | 开花期 Flowering stage | 灌浆期 Filling stage | 成熟期 Mature stage | |
Mean | -0.84*** | 0.71*** | 0.70*** | -0.66*** | -0.61*** | -0.55*** |
Var | 0.77*** | 0.51** | 0.47*** | 0.57*** | 0.65*** | 0.57*** |
Ent | 0.66*** | 0.51** | 0.34* | 0.43* | 0.55*** | 0.63*** |
NDVI | 0.82*** | 0.64*** | 0.69*** | 0.69*** | 0.75*** | 0.84*** |
DVI | 0.83*** | 0.72*** | 0.72*** | 0.70*** | 0.78*** | 0.82*** |
RVI | 0.80*** | 0.76*** | 0.77*** | 0.78*** | 0.80*** | 0.79*** |
GNDVI | 0.82*** | 0.67*** | 0.71*** | 0.72*** | 0.77*** | 0.85*** |
NDRE | 0.82*** | 0.70*** | 0.75*** | 0.76*** | 0.80*** | 0.56*** |
RECI | 0.81*** | 0.70*** | 0.76*** | 0.77*** | 0.81*** | 0.58*** |
TCARI | 0.80*** | 0.77*** | 0.75*** | 0.76*** | 0.80*** | 0.76*** |
表1 植被指数、纹理特征指标与生物量的相关性
Table 1 Correlations within vegetation indexes, texture features and biomass
指标 Index | 各时期与生物量的相关系数Coefficients of correlation with biomass at certain growth stage | |||||
---|---|---|---|---|---|---|
拔节期 Jointing stage | 孕穗期 Booting stage | 抽穗期 Heading stage | 开花期 Flowering stage | 灌浆期 Filling stage | 成熟期 Mature stage | |
Mean | -0.84*** | 0.71*** | 0.70*** | -0.66*** | -0.61*** | -0.55*** |
Var | 0.77*** | 0.51** | 0.47*** | 0.57*** | 0.65*** | 0.57*** |
Ent | 0.66*** | 0.51** | 0.34* | 0.43* | 0.55*** | 0.63*** |
NDVI | 0.82*** | 0.64*** | 0.69*** | 0.69*** | 0.75*** | 0.84*** |
DVI | 0.83*** | 0.72*** | 0.72*** | 0.70*** | 0.78*** | 0.82*** |
RVI | 0.80*** | 0.76*** | 0.77*** | 0.78*** | 0.80*** | 0.79*** |
GNDVI | 0.82*** | 0.67*** | 0.71*** | 0.72*** | 0.77*** | 0.85*** |
NDRE | 0.82*** | 0.70*** | 0.75*** | 0.76*** | 0.80*** | 0.56*** |
RECI | 0.81*** | 0.70*** | 0.76*** | 0.77*** | 0.81*** | 0.58*** |
TCARI | 0.80*** | 0.77*** | 0.75*** | 0.76*** | 0.80*** | 0.76*** |
生育时期 Growth stage | 回归方程 Regression equation | 植被指数 Vegetation index | R2 | RMSE/(kg·hm-2) | MAE/(kg·hm-2) |
---|---|---|---|---|---|
拔节期Jointing stage | Y=5903.1X-264.18 | DVI | 0.72 | 291.69 | 227.02 |
孕穗期Booting stage | Y=151.98X+2630.5 | TCARI | 0.56 | 1 483.98 | 1 255.93 |
抽穗期Heading stage | Y=288.81X+2876.2 | RVI | 0.66 | 1 625.48 | 1 285.38 |
开花期Flowering stage | Y=531.35X+3407.3 | RVI | 0.59 | 2 790.83 | 2 165.32 |
灌浆期Filling stage | Y=0.7919X+2569.8 | RECI | 0.78 | 2 228.92 | 1 783.60 |
成熟期Mature stage | Y=53795X-14256 | GNDVI | 0.72 | 3 186.10 | 2 550.66 |
表2 基于各生育期最优植被指数的线性模型
Table 2 Linear models based on optimal vegetation indexes for growth stages
生育时期 Growth stage | 回归方程 Regression equation | 植被指数 Vegetation index | R2 | RMSE/(kg·hm-2) | MAE/(kg·hm-2) |
---|---|---|---|---|---|
拔节期Jointing stage | Y=5903.1X-264.18 | DVI | 0.72 | 291.69 | 227.02 |
孕穗期Booting stage | Y=151.98X+2630.5 | TCARI | 0.56 | 1 483.98 | 1 255.93 |
抽穗期Heading stage | Y=288.81X+2876.2 | RVI | 0.66 | 1 625.48 | 1 285.38 |
开花期Flowering stage | Y=531.35X+3407.3 | RVI | 0.59 | 2 790.83 | 2 165.32 |
灌浆期Filling stage | Y=0.7919X+2569.8 | RECI | 0.78 | 2 228.92 | 1 783.60 |
成熟期Mature stage | Y=53795X-14256 | GNDVI | 0.72 | 3 186.10 | 2 550.66 |
图1 基于各生育期最优植被指数的线性模型验证 y1~y6分别对应于拔节期、孕穗期、抽穗期、开花期、灌浆期、成熟期的预测值,x为相应时期的实测值。R2,决定系数;RMSE,均方根误差;MAE,平均绝对误差。下同。
Fig.1 Verification of the constructed linear models based on optimal vegetation indexes for growth stages y1-y6 represent the predicted value at joting stage, booting stage, heading stage, flowering stage, filling stage, mature stage, respectively. x represents the measured value at the corresponding stage. R2, Coefficient of determination; RMSE, Root mean squard error; MAE, Mean absolute error. The same as below.
生育期 Growth stage | 回归方程 Regression equation | R2 | RMSE/(kg·hm-2) | MAE/(kg·hm-2) |
---|---|---|---|---|
拔节期Jointing stage | Y=-88.129×XMean+1 538.180×XDVI+4 396.559 | 0.72 | 290.24 | 225.70 |
孕穗期Booting stage | Y=-179.779×XMean+230.607×XTCARI+6 275.049 | 0.57 | 1 470.04 | 1 246.08 |
抽穗期Heading stage | Y=-402.281×XMean+523.738×XRVI+11 134.649 | 0.69 | 1 537.85 | 1 179.70 |
开花期Flowering stage | Y=621.788×XMean+889.089×XRVI-21 373.639 | 0.63 | 2 659.75 | 2 285.44 |
灌浆期Filling stage | Y=653.858×XVar+10 446.017×XRECI+1 338.706 | 0.79 | 2 109.77 | 1 683.14 |
成熟期Mature stage | Y=14 332.459×XEnt+47 702.454×XGNDVI-38 563.559 | 0.74 | 3111.02 | 2 596.56 |
表3 基于各生育期最优植被指数与纹理特征的二元线性模型
Table 3 Binary linear models based on optimal vegetation indexes and texture features for growth stages
生育期 Growth stage | 回归方程 Regression equation | R2 | RMSE/(kg·hm-2) | MAE/(kg·hm-2) |
---|---|---|---|---|
拔节期Jointing stage | Y=-88.129×XMean+1 538.180×XDVI+4 396.559 | 0.72 | 290.24 | 225.70 |
孕穗期Booting stage | Y=-179.779×XMean+230.607×XTCARI+6 275.049 | 0.57 | 1 470.04 | 1 246.08 |
抽穗期Heading stage | Y=-402.281×XMean+523.738×XRVI+11 134.649 | 0.69 | 1 537.85 | 1 179.70 |
开花期Flowering stage | Y=621.788×XMean+889.089×XRVI-21 373.639 | 0.63 | 2 659.75 | 2 285.44 |
灌浆期Filling stage | Y=653.858×XVar+10 446.017×XRECI+1 338.706 | 0.79 | 2 109.77 | 1 683.14 |
成熟期Mature stage | Y=14 332.459×XEnt+47 702.454×XGNDVI-38 563.559 | 0.74 | 3111.02 | 2 596.56 |
图2 基于各生育期最优植被指数与纹理特征的二元线性模型验证
Fig.2 Verification of the constructed binary linear models based on optimal vegetation indexes and texture features for growth stages
生育期 Growth stage | 植被指数Vegetation indexes | 植被指数+纹理特征Vegetation indexes+texture features | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
建模集Modeling set | 验证集Validation set | 建模集Modeling set | 验证集Validation set | |||||||||
R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | |
拔节期 | 0.93 | 151.48 | 112.68 | 0.46 | 486.82 | 363.89 | 0.98 | 77.61 | 63.17 | 0.56 | 453.26 | 368.62 |
Jointing stage | ||||||||||||
孕穗期 | 0.64 | 1 334.05 | 1 179.94 | 0.60 | 1 372.66 | 1 068.87 | 0.64 | 1 340.06 | 1 144.86 | 0.62 | 1 343.03 | 1 033.66 |
Booting stage | ||||||||||||
抽穗期 | 0.69 | 1 543.34 | 1 172.91 | 0.66 | 2 864.57 | 2 255.11 | 0.78 | 1 289.56 | 984.51 | 0.82 | 2 428.92 | 1 847.91 |
Heading stage | ||||||||||||
开花期 | 0.62 | 2 677.76 | 2 200.77 | 0.51 | 2 632.76 | 2 349.72 | 0.75 | 2 179.16 | 1 841.78 | 0.57 | 2 592.52 | 1 815.60 |
Flowering stage | ||||||||||||
灌浆期 | 0.76 | 2 263.58 | 1 792.08 | 0.51 | 4 007.59 | 3 437.22 | 0.89 | 1 543.50 | 1 416.67 | 0.53 | 3 751.17 | 3 144.52 |
Filling stage | ||||||||||||
成熟期 | 0.82 | 2 582.25 | 2 024.81 | 0.69 | 3 196.87 | 2 788.14 | 0.84 | 2 422.84 | 1 966.21 | 0.73 | 2 949.30 | 2 479.46 |
Mature stage |
表4 基于偏最小二乘回归(PLSR)算法构建的不同生育时期的冬小麦生物量预测模型
Table 4 Prediction models for winter wheat biomass at growth stages based on partial least squares regression (PLSR)
生育期 Growth stage | 植被指数Vegetation indexes | 植被指数+纹理特征Vegetation indexes+texture features | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
建模集Modeling set | 验证集Validation set | 建模集Modeling set | 验证集Validation set | |||||||||
R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | |
拔节期 | 0.93 | 151.48 | 112.68 | 0.46 | 486.82 | 363.89 | 0.98 | 77.61 | 63.17 | 0.56 | 453.26 | 368.62 |
Jointing stage | ||||||||||||
孕穗期 | 0.64 | 1 334.05 | 1 179.94 | 0.60 | 1 372.66 | 1 068.87 | 0.64 | 1 340.06 | 1 144.86 | 0.62 | 1 343.03 | 1 033.66 |
Booting stage | ||||||||||||
抽穗期 | 0.69 | 1 543.34 | 1 172.91 | 0.66 | 2 864.57 | 2 255.11 | 0.78 | 1 289.56 | 984.51 | 0.82 | 2 428.92 | 1 847.91 |
Heading stage | ||||||||||||
开花期 | 0.62 | 2 677.76 | 2 200.77 | 0.51 | 2 632.76 | 2 349.72 | 0.75 | 2 179.16 | 1 841.78 | 0.57 | 2 592.52 | 1 815.60 |
Flowering stage | ||||||||||||
灌浆期 | 0.76 | 2 263.58 | 1 792.08 | 0.51 | 4 007.59 | 3 437.22 | 0.89 | 1 543.50 | 1 416.67 | 0.53 | 3 751.17 | 3 144.52 |
Filling stage | ||||||||||||
成熟期 | 0.82 | 2 582.25 | 2 024.81 | 0.69 | 3 196.87 | 2 788.14 | 0.84 | 2 422.84 | 1 966.21 | 0.73 | 2 949.30 | 2 479.46 |
Mature stage |
生育期 Growth stage | 植被指数Vegetation indexes | 植被指数+纹理特征Vegetation indexes+texture features | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
建模集Modeling set | 验证集Validation set | 建模集Modeling set | 验证集Validation set | |||||||||
R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | |
拔节期 | 0.97 | 118.29 | 68.63 | 0.39 | 510.15 | 399.01 | 0.98 | 102.62 | 61.28 | 0.50 | 466.66 | 366.74 |
Jointing stage | ||||||||||||
孕穗期 | 0.92 | 696.93 | 651.17 | 0.73 | 1 040.43 | 879.69 | 0.91 | 731.27 | 675.75 | 0.71 | 1 100.39 | 904.78 |
Booting stage | ||||||||||||
抽穗期 | 0.89 | 953.83 | 724.40 | 0.78 | 2 464.82 | 1 783.65 | 0.90 | 929.37 | 722.35 | 0.74 | 2 660.78 | 1961.81 |
Heading stage | ||||||||||||
开花期 | 0.86 | 1 691.89 | 1 313.75 | 0.52 | 2 734.51 | 2 341.96 | 0.87 | 1 664.99 | 1 264.36 | 0.62 | 2 628.67 | 2 194.74 |
Flowering stage | ||||||||||||
灌浆期 | 0.94 | 1 183.52 | 951.90 | 0.62 | 3 510.22 | 2 801.53 | 0.95 | 1 069.14 | 851.68 | 0.63 | 3 391.27 | 2 827.37 |
Filling stage | ||||||||||||
成熟期 | 0.94 | 1 525.32 | 1 304.33 | 0.59 | 3 633.37 | 3 035.49 | 0.95 | 1 494.20 | 1 314.25 | 0.61 | 3 467.03 | 2 784.43 |
Mature stage |
表5 基于随机森林(RF)算法构建的不同生育时期的冬小麦生物量预测模型
Table 5 Prediction models for winter wheat biomass at growth stages based on random forest (RF)
生育期 Growth stage | 植被指数Vegetation indexes | 植被指数+纹理特征Vegetation indexes+texture features | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
建模集Modeling set | 验证集Validation set | 建模集Modeling set | 验证集Validation set | |||||||||
R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | R2 | RMSE/ (kg· hm-2) | MAE/ (kg· hm-2) | |
拔节期 | 0.97 | 118.29 | 68.63 | 0.39 | 510.15 | 399.01 | 0.98 | 102.62 | 61.28 | 0.50 | 466.66 | 366.74 |
Jointing stage | ||||||||||||
孕穗期 | 0.92 | 696.93 | 651.17 | 0.73 | 1 040.43 | 879.69 | 0.91 | 731.27 | 675.75 | 0.71 | 1 100.39 | 904.78 |
Booting stage | ||||||||||||
抽穗期 | 0.89 | 953.83 | 724.40 | 0.78 | 2 464.82 | 1 783.65 | 0.90 | 929.37 | 722.35 | 0.74 | 2 660.78 | 1961.81 |
Heading stage | ||||||||||||
开花期 | 0.86 | 1 691.89 | 1 313.75 | 0.52 | 2 734.51 | 2 341.96 | 0.87 | 1 664.99 | 1 264.36 | 0.62 | 2 628.67 | 2 194.74 |
Flowering stage | ||||||||||||
灌浆期 | 0.94 | 1 183.52 | 951.90 | 0.62 | 3 510.22 | 2 801.53 | 0.95 | 1 069.14 | 851.68 | 0.63 | 3 391.27 | 2 827.37 |
Filling stage | ||||||||||||
成熟期 | 0.94 | 1 525.32 | 1 304.33 | 0.59 | 3 633.37 | 3 035.49 | 0.95 | 1 494.20 | 1 314.25 | 0.61 | 3 467.03 | 2 784.43 |
Mature stage |
[1] | WHEELER T, VON BRAUN J. Climate change impacts on global food security[J]. Science, 2013, 341(6145): 508-513. |
[2] | PROSEKOV A Y, IVANOVA S A. Food security: the challenge of the present[J]. Geoforum, 2018, 91: 73-77. |
[3] | MOLOTOKS A, SMITH P, DAWSON T P. Impacts of land use, population, and climate change on global food security[J]. Food and Energy Security, 2021, 10(1): e261. |
[4] | 吴宁, 陈涛, 陈奕如. 新时代中国粮食安全问题的挑战与对策[J]. 福州大学学报(哲学社会科学版), 2022, 36(4): 1-10. |
WU N, CHEN T, CHEN Y R. On food security in China in the new era[J]. Journal of Fuzhou University (Philosophy and Social Sciences), 2022, 36(4): 1-10. (in Chinese) | |
[5] | 韩一军, 韩亭辉. “十四五”时期我国小麦增产潜力分析与实现路径[J]. 农业经济问题, 2021, 42(7): 38-46. |
HAN Y J, HAN T H. China’s wheat yield increase potential and realization path during the “14th five-year plan” period[J]. Issues in Agricultural Economy, 2021, 42(7): 38-46. (in Chinese with English abstract) | |
[6] | 陈先冠, 冯利平, 马雪晴, 等. 不同播期和灌水条件下冬小麦生物量变化与产量模拟[J]. 农业机械学报, 2021, 52(10): 349-357. |
CHEN X G, FENG L P, MA X Q, et al. Biomass change and yield simulation of winter wheat under different sowing dates and irrigation conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 349-357. (in Chinese with English abstract) | |
[7] | CURTIS T, HALFORD N G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety[J]. The Annals of Applied Biology, 2014, 164(3): 354-372. |
[8] | 蒋馥根, 孙华, 李成杰, 等. 联合GF-6和Sentinel-2红边波段的森林地上生物量反演[J]. 生态学报, 2021, 41(20): 8222-8236. |
JIANG F G, SUN H, LI C J, et al. Retrieving the forest aboveground biomass by combining the red edge bands of Sentinel-2 and GF-6[J]. Acta Ecologica Sinica, 2021, 41(20): 8222-8236. (in Chinese with English abstract) | |
[9] | BERRA E F, GAULTON R, BARR S. Assessing spring phenology of a temperate woodland: a multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations[J]. Remote Sensing of Environment, 2019, 223: 229-242. |
[10] | BERNI J A J, ZARCO-TEJADA P J, SUAREZ L, et al. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 722-738. |
[11] | WÓJTOWICZ M, WÓJTOWICZ A, PIEKARCZYK J. Application of remote sensing methods in agriculture[J]. Communications in Biometry and Crop Science, 2016, 11(1): 31-50. |
[12] | 张传波, 李卫国, 张宏, 等. 遥感光谱指标和神经网络结合的冬小麦地上部生物量估测[J]. 麦类作物学报, 2022, 42(5): 631-639. |
ZHANG C B, LI W G, ZHANG H, et al. Estimation of winter wheat aboveground biomass based on remote sensing spectral index and neural network[J]. Journal of Triticeae Crops, 2022, 42(5): 631-639. (in Chinese with English abstract) | |
[13] | KONG W P, HUANG W J, MA L L, et al. Biangular-combined vegetation indices to improve the estimation of canopy chlorophyll content in wheat using multi-angle experimental and simulated spectral data[J]. Frontiers in Plant Science, 2022, 13: 866301. |
[14] | MAIMAITIJIANG M, SAGAN V, SIDIKE P, et al. Vegetation Index Weighted Canopy Volume Model (CVMVI) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151: 27-41. |
[15] | 杨普, 赵远洋, 李一鸣, 等. 基于多源信息融合的农业空地一体化研究综述[J]. 农业机械学报, 2021, 52(S1): 185-196. |
YANG P, ZHAO Y Y, LI Y M, et al. Review of research on integration of agricultural air-ground integration based on multi-source information fusion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 185-196. (in Chinese with English abstract) | |
[16] | 岳学军, 宋庆奎, 李智庆, 等. 田间作物信息监测技术的研究现状与展望[J]. 华南农业大学学报, 2023, 44(1): 43-56. |
YUE X J, SONG Q K, LI Z Q, et al. Research status and prospect of crop information monitoring technology in field[J]. Journal of South China Agricultural University, 2023, 44(1): 43-56. (in Chinese with English abstract) | |
[17] | 刘杨, 黄珏, 孙乾, 等. 利用无人机数码影像估算马铃薯地上生物量[J]. 遥感学报, 2021, 25(9): 2004-2014. |
LIU Y, HUANG J, SUN Q, et al. Estimation of plant height and above ground biomass of potato based on UAV digital image[J]. National Remote Sensing Bulletin, 2021, 25(9): 2004-2014. (in Chinese with English abstract) | |
[18] | LIU Y N, LIU S S, LI J, et al. Estimating biomass of winter oilseed rape using vegetation indices and texture metrics derived from UAV multispectral images[J]. Computers and Electronics in Agriculture, 2019, 166: 105026. |
[19] | FREITAS R G, PEREIRA F R S, DOS REIS A A, et al. Estimating pasture aboveground biomass under an integrated crop-livestock system based on spectral and texture measures derived from UAV images[J]. Computers and Electronics in Agriculture, 2022, 198: 107122. |
[20] | XU T Y, WANG F M, XIE L L, et al. Integrating the textural and spectral information of UAV hyperspectral images for the improved estimation of rice aboveground biomass[J]. Remote Sensing, 2022, 14(11): 2534. |
[21] | WANG F L, YANG M, MA L F, et al. Estimation of above-ground biomass of winter wheat based on consumer-grade multi-spectral UAV[J]. Remote Sensing, 2022, 14(5): 1251. |
[22] | 徐云飞, 程琦, 魏祥平, 等. 变异系数法结合优化神经网络的无人机冬小麦长势监测[J]. 农业工程学报, 2021, 37(20): 71-80. |
XU Y F, CHENG Q, WEI X P, et al. Monitoring of winter wheat growth under UAV using variation coefficient method and optimized neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 71-80. (in Chinese with English abstract) | |
[23] | BANNARI A, MORIN D, BONN F, et al. A review of vegetation indices[J]. Remote Sensing Reviews, 1995, 13(1/2): 95-120. |
[24] | TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150. |
[25] | 杭艳红, 苏欢, 于滋洋, 等. 结合无人机光谱与纹理特征和覆盖度的水稻叶面积指数估算[J]. 农业工程学报, 2021, 37(9): 64-71. |
HANG Y H, SU H, YU Z Y, et al. Estimation of rice leaf area index combining UAV spectrum, texture features and vegetation coverage[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 64-71. (in Chinese with English abstract) | |
[26] | 李鑫格, 项方林, 吴思雨, 等. 基于植被指数时序动态的冬小麦氮素营养诊断方法[J]. 麦类作物学报, 2022, 42(1): 109-119. |
LI X G, XIANG F L, WU S Y, et al. Diagnosis methods for nitrogen status based on the time-series vegetation index in winter wheat[J]. Journal of Triticeae Crops, 2022, 42(1): 109-119. (in Chinese with English abstract) | |
[27] | 梁继, 郑镇炜, 夏诗婷, 等. 高分六号红边特征的农作物识别与评估[J]. 遥感学报, 2020, 24(10): 1168-1179. |
LIANG J, ZHENG Z W, XIA S T, et al. Crop recognition and evaluation using red edge features of GF-6 satellite[J]. Journal of Remote Sensing, 2020, 24(10): 1168-1179. (in Chinese with English abstract) | |
[28] | HARALICK R M, SHANMUGAM K, DINSTEIN I. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610-621. |
[29] | 刘杨, 冯海宽, 孙乾, 等. 不同分辨率无人机数码影像的马铃薯地上生物量估算研究[J]. 光谱学与光谱分析, 2021, 41(5): 1470-1476. |
LIU Y, FENG H K, SUN Q, et al. Estimation study of above ground biomass in potato based on UAV digital images with different resolutions[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1470-1476. (in Chinese with English abstract) | |
[30] | 周元琦, 王敦亮, 陈晨, 等. 基于无人机RGB图像颜色及纹理特征指数的小麦产量预测[J]. 扬州大学学报(农业与生命科学版), 2021, 42(3): 110-116. |
ZHOU Y Q, WANG D L, CHEN C, et al. Prediction of wheat yield based on color index and texture feature index of unmanned aerial vehicle RGB image[J]. Journal of Yangzhou University(Agricultural and Life Science Edition), 2021, 42(3): 110-116. (in Chinese with English abstract) | |
[31] | SEXTON J, LAAKE P. Standard errors for bagged and random forest estimators[J]. Computational Statistics & Data Analysis, 2009, 53(3): 801-811. |
[32] | WANG W, YAO X A, YAO X F, et al. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat[J]. Field Crops Research, 2012, 129: 90-98. |
[33] | YUE J B, YANG G J, LI C C, et al. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models[J]. Remote Sensing, 2017, 9(7): 708. |
[34] | 崔日鲜, 刘亚东, 付金东. 基于可见光光谱和BP人工神经网络的冬小麦生物量估算研究[J]. 光谱学与光谱分析, 2015, 35(9): 2596-2601. |
CUI R X, LIU Y D, FU J D. Estimation of winter wheat biomass using visible spectral and BP based artificial neural networks[J]. Spectroscopy and Spectral Analysis, 2015, 35(9): 2596-2601. (in Chinese with English abstract) | |
[35] | 申洋洋, 陈志超, 胡昊, 等. 基于无人机多时相遥感影像的冬小麦产量估算[J]. 麦类作物学报, 2021, 41(10): 1298-1306. |
SHEN Y Y, CHEN Z C, HU H, et al. Estimation of winter wheat yield based on UAV multi-temporal remote sensing image[J]. Journal of Triticeae Crops, 2021, 41(10): 1298-1306. (in Chinese with English abstract) | |
[36] | 张春兰, 杨贵军, 李贺丽, 等. 基于随机森林算法的冬小麦叶面积指数遥感反演研究[J]. 中国农业科学, 2018, 51(5): 855-867. |
ZHANG C L, YANG G J, LI H L, et al. Remote sensing inversion of leaf area index of winter wheat based on random forest algorithm[J]. Scientia Agricultura Sinica, 2018, 51(5): 855-867. (in Chinese with English abstract) |
[1] | 王宇, 汪泓, 肖玖军, 李可相, 邢丹, 张永亮, 陈阳, 张蓝月. 基于优化植被指数组合的多品种辣椒叶片叶绿素数值估测[J]. 浙江农业学报, 2023, 35(9): 2109-2120. |
[2] | 孙丽娟, 李世民, 郭焕仙, 金友帆, 李树萍, 董琼. 树番茄幼苗生长与氮磷钾化学计量特征对光照、肥料的响应[J]. 浙江农业学报, 2023, 35(8): 1793-1804. |
[3] | 郭发旭, 冯全, 杨森, 杨婉霞. 基于无人机高光谱的马铃薯冠层叶片全氮含量反演[J]. 浙江农业学报, 2023, 35(8): 1904-1914. |
[4] | 肖家昶, 雷凤芸, 格桑, 马俊英, 贺茂林, 李艳文, 郑阳霞. 外源喷施氨基酸肥对豆瓣菜生长与硒吸收的影响[J]. 浙江农业学报, 2023, 35(7): 1638-1647. |
[5] | 张雪楠, 王乐乐, 钮铭轩, 詹妮, 任浩杰, 徐浩聪, 杨昆, 武立权, 柯健, 尤翠翠, 何海兵. 基于叶片反射光谱和叶绿素荧光估测水稻叶片含水量[J]. 浙江农业学报, 2023, 35(6): 1265-1277. |
[6] | 张梦, 佘宝, 杨玉莹, 黄林生, 朱梦琦. 基于无人机RGB影像的大豆种植区提取方法研究[J]. 浙江农业学报, 2023, 35(4): 952-961. |
[7] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[8] | 姜友谊, 张成健, 韩少宇, 杨小冬, 杨贵军, 杨浩. 基于无人机三维点云的玉米植株自动计数研究[J]. 浙江农业学报, 2022, 34(9): 2032-2042. |
[9] | 王钧, 陆洲, 罗明, 徐飞飞, 张序. 基于机载多光谱的冬小麦返青期土壤墒情反演[J]. 浙江农业学报, 2022, 34(6): 1297-1305. |
[10] | 蔡瑶, 缪宇轩, 吴浩, 王丹. 高CO2浓度下冬小麦的高光谱特征及其与叶面积指数和SPAD值的反演[J]. 浙江农业学报, 2022, 34(3): 582-589. |
[11] | 吴浩, 张雪松, 王丹. 不同CO2浓度和氮水平对冬小麦光合和生长特性的影响[J]. 浙江农业学报, 2022, 34(12): 2594-2602. |
[12] | 邬宁珊, 王佳希, 张岩, 元慕田, 张琪, 高驰宇. 基于无人机可见光影像的树种和树冠信息提取——以晋西黄土区蔡家川流域为例[J]. 浙江农业学报, 2021, 33(8): 1505-1518. |
[13] | 侯立娟, 李正鹏, 林金盛, 马林, 李辉平, 曲绍轩, 姜建新, 邹秀龙, 杨华平, 李长田, 蒋宁. 不同光质LED光照对草菇菌丝生长速度、菌丝分支与生物量的影响[J]. 浙江农业学报, 2021, 33(6): 1110-1116. |
[14] | 张矞勋, 王磊, 璩向宁, 曹媛, 吴梦瑶, 于瑞鑫, 孙源. GF-1/WFV在玉米叶面积指数估算中的应用研究[J]. 浙江农业学报, 2021, 33(5): 861-872. |
[15] | 姚钊, 王重阳, 崔静. 小麦不同穗位籽粒灌浆特性的影响[J]. 浙江农业学报, 2021, 33(4): 576-585. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||