浙江农业学报 ›› 2023, Vol. 35 ›› Issue (1): 156-163.DOI: 10.3969/j.issn.1004-1524.2023.01.17
王薇薇1(), 梅燚1, 吴永成1, 万红建2, 陈长军3, 郑青松3, 郑佳秋1,*(
)
收稿日期:
2021-12-10
出版日期:
2023-01-25
发布日期:
2023-02-21
通讯作者:
*郑佳秋,E-mail:zjq5752279@163.com
作者简介:
王薇薇(1988—),女,江苏盐城人,硕士研究生,主要从事蔬菜育种和栽培工作。E-mail:582615451@qq.com
基金资助:
WANG Weiwei1(), MEI Yi1, WU Yongcheng1, WAN Hongjian2, CHEN Changjun3, ZHENG Qingsong3, ZHENG Jiaqiu1,*(
)
Received:
2021-12-10
Online:
2023-01-25
Published:
2023-02-21
摘要:
以辣椒连作土壤为研究对象,添加不同量(5、10、20、30 t·hm-2)的玉米芯生物炭,通过测定土壤基本理化性质、微生物量碳(MBC)、微生物量氮(MBN)和植株生长指标的变化,探讨生物炭施用对连作土壤和辣椒生长的影响。结果表明:与不添加生物炭的CK相比,添加适量生物炭显著(P<0.05)提高了辣椒连作土壤的有机碳(SOC)、全氮、全磷、有效磷和速效钾含量,但降低了全钾含量。施用生物炭较CK显著(P<0.05)降低了土壤MBC/MBN和土壤MBC/SOC。当生物炭添加量≥10 t·hm-2时,土壤MBC、MBN含量较CK显著(P<0.05)增加;当生物炭添加量为10~20 t·hm-2时,土壤MBN/TN较CK显著(P<0.05)提高。相关性分析表明,土壤MBC、MBN与土壤全氮、有机碳、全磷、有效磷呈极显著(P<0.01)正相关,与土壤全钾呈极显著(P<0.01)负相关。当生物炭用量为5~20 t·hm-2时,辣椒植株的单株产量较CK显著(P<0.05)增加,且当施用量为20 t·hm-2时,辣椒植株的单株产量在试验条件下达最大值,但更高量的生物炭并不会进一步促进辣椒的生长。综上,施用适量生物炭可改善辣椒连作土壤的微生态环境,提高土壤肥力,促进辣椒生长,提高辣椒产量。
中图分类号:
王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163.
WANG Weiwei, MEI Yi, WU Yongcheng, WAN Hongjian, CHEN Changjun, ZHENG Qingsong, ZHENG Jiaqiu. Effects of corncob biochar application on soil characteristics and pepper growth under continuous cropping[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 156-163.
处理 Treatment | pH | SOC/ (g·kg-1) | TN/ (g·kg-1) | SOC/ TN | TP/ (mg·kg-1) | AP/ (mg·kg-1) | TK/ (g·kg-1) | AK/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
CK | 7.49± 0.13 a | 8.30± 0.18 d | 0.90± 0.05 c | 9.28± 0.39 d | 881.28± 83.06 c | 33.97± 3.78 b | 2.26± 0.05 ab | 259.50± 6.87 b |
T1 | 7.43± 0.07 a | 12.78± 0.86 c | 1.02± 0.09 bc | 12.59± 0.34 c | 1 016.50± 72.98 bc | 34.03± 4.36 b | 2.27± 0.03 a | 296.35± 9.54 a |
T2 | 7.41± 0.10 a | 14.45± 1.28 c | 1.09± 0.14 b | 13.34± 0.56 c | 974.13± 11.94 bc | 44.56± 2.97 b | 2.23± 0.02 ab | 310.83± 10.56 a |
T3 | 7.40± 0.10 a | 23.11± 1.58 b | 1.45± 0.11 a | 15.94± 0.09 b | 1 132.08± 98.24 b | 72.85± 10.28 a | 2.11± 0.07 c | 294.94± 6.51 a |
T4 | 7.34± 0.06 a | 26.31± 1.66 a | 1.54± 0.09 a | 17.12± 0.55 a | 1 354.27± 125.17 a | 76.69± 2.90 a | 2.15± 0.05 bc | 272.49± 11.65 b |
表1 不同处理对土壤理化性质的影响
Table 1 Effects of different treatments on soil physiochemical properties
处理 Treatment | pH | SOC/ (g·kg-1) | TN/ (g·kg-1) | SOC/ TN | TP/ (mg·kg-1) | AP/ (mg·kg-1) | TK/ (g·kg-1) | AK/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
CK | 7.49± 0.13 a | 8.30± 0.18 d | 0.90± 0.05 c | 9.28± 0.39 d | 881.28± 83.06 c | 33.97± 3.78 b | 2.26± 0.05 ab | 259.50± 6.87 b |
T1 | 7.43± 0.07 a | 12.78± 0.86 c | 1.02± 0.09 bc | 12.59± 0.34 c | 1 016.50± 72.98 bc | 34.03± 4.36 b | 2.27± 0.03 a | 296.35± 9.54 a |
T2 | 7.41± 0.10 a | 14.45± 1.28 c | 1.09± 0.14 b | 13.34± 0.56 c | 974.13± 11.94 bc | 44.56± 2.97 b | 2.23± 0.02 ab | 310.83± 10.56 a |
T3 | 7.40± 0.10 a | 23.11± 1.58 b | 1.45± 0.11 a | 15.94± 0.09 b | 1 132.08± 98.24 b | 72.85± 10.28 a | 2.11± 0.07 c | 294.94± 6.51 a |
T4 | 7.34± 0.06 a | 26.31± 1.66 a | 1.54± 0.09 a | 17.12± 0.55 a | 1 354.27± 125.17 a | 76.69± 2.90 a | 2.15± 0.05 bc | 272.49± 11.65 b |
处理 Treatment | MBC/ (mg·kg-1) | MBN/ (mg·kg-1) | MBC/MBN |
---|---|---|---|
CK | 162.25±3.27 d | 26.83±0.45 d | 6.05±0.02 a |
T1 | 177.94±17.97 cd | 30.21±2.34 d | 5.89±0.08 b |
T2 | 196.73±13.59 c | 36.16±2.80 c | 5.44±0.05 d |
T3 | 271.58±13.85 a | 50.66±2.43 a | 5.36±0.03 d |
T4 | 244.81±11.58 b | 42.44±1.58 b | 5.77±0.07 c |
表2 不同处理对土壤微生物量碳、氮的影响
Table 2 Effects of different treatments on soil microbial biomass carbon and nitrogen
处理 Treatment | MBC/ (mg·kg-1) | MBN/ (mg·kg-1) | MBC/MBN |
---|---|---|---|
CK | 162.25±3.27 d | 26.83±0.45 d | 6.05±0.02 a |
T1 | 177.94±17.97 cd | 30.21±2.34 d | 5.89±0.08 b |
T2 | 196.73±13.59 c | 36.16±2.80 c | 5.44±0.05 d |
T3 | 271.58±13.85 a | 50.66±2.43 a | 5.36±0.03 d |
T4 | 244.81±11.58 b | 42.44±1.58 b | 5.77±0.07 c |
图1 不同处理对土壤MBC/SOC、MBN/TN的影响 同一指标下不同处理柱上无相同字母的表示差异显著(P<0.05)。
Fig.1 Effects of different treatments on soil MBC/SOC and MBN/TN Bars marked without the same letters indicated significant difference at P<0.05 within treatments under the same index.
指标Index | TN | SOC | TK | pH | TP | AP | AK |
---|---|---|---|---|---|---|---|
MBC | 0.944** | 0.927** | -0.695** | -0.418 | 0.727** | 0.923** | 0.200 |
MBN | 0.899** | 0.885** | -0.696** | -0.386 | 0.652** | 0.888** | 0.292 |
MBC/MBN | -0.492 | -0.512 | 0.501 | 0.227 | -0.229 | -0.517* | -0.667** |
MBC/SOC | -0.851** | -0.913** | 0.531* | 0.501 | -0.831** | -0.778** | -0.338 |
MBN/TN | -0.061 | -0.025 | -0.335 | 0.086 | -0.309 | 0.054 | 0.453 |
表3 土壤理化性质与土壤微生物量碳、氮的相关性
Table 3 Correlation within soil physiochemical properties and microbial biomass carbon and nitrogen
指标Index | TN | SOC | TK | pH | TP | AP | AK |
---|---|---|---|---|---|---|---|
MBC | 0.944** | 0.927** | -0.695** | -0.418 | 0.727** | 0.923** | 0.200 |
MBN | 0.899** | 0.885** | -0.696** | -0.386 | 0.652** | 0.888** | 0.292 |
MBC/MBN | -0.492 | -0.512 | 0.501 | 0.227 | -0.229 | -0.517* | -0.667** |
MBC/SOC | -0.851** | -0.913** | 0.531* | 0.501 | -0.831** | -0.778** | -0.338 |
MBN/TN | -0.061 | -0.025 | -0.335 | 0.086 | -0.309 | 0.054 | 0.453 |
处理 Treatment | 株高 Plant height/cm | 株幅 Plant width/cm | 茎粗 Stem diameter/mm | 单株产量 Yield per plant/kg | 植株鲜重 Fresh weight/kg |
---|---|---|---|---|---|
CK | 93.11±6.29 b | 96.53±3.20 b | 16.36±0.36 c | 1.24±0.04 c | 0.50±0.04 b |
T1 | 99.10±3.02 ab | 105.42±2.64 a | 17.18±0.50 bc | 1.42±0.09 b | 0.58±0.01 a |
T2 | 99.09±5.81 ab | 107.23±1.72 a | 18.21±0.08 ab | 1.45±0.01 b | 0.60±0.03 a |
T3 | 103.84±2.66 a | 111.13±5.60 a | 19.57±1.28 a | 1.62±0.05 a | 0.62±0.03 a |
T4 | 91.63±4.00 b | 94.28±2.21 b | 17.30±1.07 bc | 1.22±0.08 c | 0.47±0.05 b |
表4 不同处理对辣椒农艺性状的影响
Table 4 Effect of different treatments on agronomic traits of pepper
处理 Treatment | 株高 Plant height/cm | 株幅 Plant width/cm | 茎粗 Stem diameter/mm | 单株产量 Yield per plant/kg | 植株鲜重 Fresh weight/kg |
---|---|---|---|---|---|
CK | 93.11±6.29 b | 96.53±3.20 b | 16.36±0.36 c | 1.24±0.04 c | 0.50±0.04 b |
T1 | 99.10±3.02 ab | 105.42±2.64 a | 17.18±0.50 bc | 1.42±0.09 b | 0.58±0.01 a |
T2 | 99.09±5.81 ab | 107.23±1.72 a | 18.21±0.08 ab | 1.45±0.01 b | 0.60±0.03 a |
T3 | 103.84±2.66 a | 111.13±5.60 a | 19.57±1.28 a | 1.62±0.05 a | 0.62±0.03 a |
T4 | 91.63±4.00 b | 94.28±2.21 b | 17.30±1.07 bc | 1.22±0.08 c | 0.47±0.05 b |
[1] | 宋静爽, 王静, 刘周斌, 等. 辣椒苗期对低温胁迫的响应及耐冷评价体系的建立[J]. 分子植物育种, 2020, 18(22): 7537-7546. |
SONG J S, WANG J, LIU Z B, et al. Response of pepper seedlings to low temperature stress and establishment of cold tolerance evaluation system[J]. Molecular Plant Breeding, 2020, 18(22): 7537-7546. (in Chinese with English abstract) | |
[2] | 李春龙, 贺阳冬, 陈华, 等. 辣椒连作障碍机制初探及其下茬作物的初选[J]. 安徽农业科学, 2007, 35(26): 8187-8188. |
LI C L, HE Y D, CHEN H, et al. Elementary study on continuous cropping obstacle mechanism of red pepper and preliminary selection for its next-stubble crops[J]. Journal of Anhui Agricultural Sciences, 2007, 35(26): 8187-8188. (in Chinese with English abstract) | |
[3] | 郭红伟, 郭世荣, 刘来, 等. 辣椒连作对土壤理化性状、植株生理抗性及离子吸收的影响[J]. 土壤, 2012, 44(6): 1041-1047. |
GUO H W, GUO S R, LIU L, et al. Effects of continuous cropping on physical and chemical properties of soil, physiological resistance and ion absorption of pepper[J]. Soils, 2012, 44(6): 1041-1047. (in Chinese with English abstract) | |
[4] | 刘来, 黄保健, 孙锦, 等. 大棚辣椒连作土壤微生物数量、酶活性与土壤肥力的关系[J]. 中国土壤与肥料, 2013(2): 5-10. |
LIU L, HUANG B J, SUN J, et al. Relationship between soil microbial quantity, enzyme activity and soil fertility in hot pepper greenhouse soils of different continuous cropping years[J]. Soil and Fertilizer Sciences in China, 2013(2): 5-10. (in Chinese with English abstract) | |
[5] | 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16): 3324-3333. |
CHEN W F, ZHANG W M, MENG J. Advances and prospects in research of biochar utilization in agriculture[J]. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333. (in Chinese with English abstract) | |
[6] | 丁艳丽, 刘杰, 王莹莹. 生物炭对农田土壤微生物生态的影响研究进展[J]. 应用生态学报, 2013, 24(11): 3311-3317. |
DING Y L, LIU J, WANG Y Y. Effects of biochar on microbial ecology in agriculture soil: a review[J]. Chinese Journal of Applied Ecology, 2013, 24(11): 3311-3317. (in Chinese with English abstract) | |
[7] | 王国强, 孙焕明, 郭琰. 生物炭对CH4和N2O排放的影响综述[J]. 中国农学通报, 2018, 34(27): 118-123. |
WANG G Q, SUN H M, GUO Y. Effects of biochar application on greenhouse gas(CH4 and N2O) emission: a review[J]. Chinese Agricultural Science Bulletin, 2018, 34(27): 118-123. (in Chinese with English abstract) | |
[8] | 何绪生, 耿增超, 佘雕, 等. 生物炭生产与农用的意义及国内外动态[J]. 农业工程学报, 2011, 27(2): 1-7. |
HE X S, GENG Z C, SHE D, et al. Implications of production and agricultural utilization of biochar and its international dynamic[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2): 1-7. (in Chinese with English abstract) | |
[9] | 卜晓莉, 薛建辉. 生物炭对土壤生境及植物生长影响的研究进展[J]. 生态环境学报, 2014, 23(3): 535-540. |
BU X L, XUE J H. Biochar effects on soil habitat and plant growth: a review[J]. Ecology and Environmental Sciences, 2014, 23(3): 535-540. (in Chinese with English abstract) | |
[10] | 谢祖彬, 刘琦, 许燕萍, 等. 生物炭研究进展及其研究方向[J]. 土壤, 2011, 43(6): 857-861. |
XIE Z B, LIU Q, XU Y P, et al. Advances and perspectives of biochar research[J]. Soils, 2011, 43(6): 857-861. (in Chinese with English abstract) | |
[11] | 顾美英, 唐光木, 刘洪亮, 等. 施用棉秆炭对新疆连作棉花根际土壤微生物群落结构和功能的影响[J]. 应用生态学报, 2016, 27(1): 173-181. |
GU M Y, TANG G M, LIU H L, et al. Effects of cotton stalk biochar on microbial community structure and function of continuous cropping cotton rhizosphere soil in Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 173-181. (in Chinese with English abstract) | |
[12] | 张功臣, 陈建美, 赵征宇, 等. 生物质炭对设施连作土壤性质及黄瓜生长和产量的影响[J]. 土壤通报, 2018, 49(3): 659-666. |
ZHANG G C, CHEN J M, ZHAO Z Y, et al. Effects of biochar application on soil characteristics, growth and yield of cucumber under continuous cropping[J]. Chinese Journal of Soil Science, 2018, 49(3): 659-666. (in Chinese with English abstract) | |
[13] |
ELMER W H, PIGNATELLO J J. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of Asparagus in replant soils[J]. Plant Disease, 2011, 95(8): 960-966.
DOI URL |
[14] | 张晓颖. 生物质炭缓解桃连作障碍的效应研究[D]. 武汉: 华中农业大学, 2013. |
ZHANG X Y. The research on mitigative effects of biochar on peach replant disease[D]. Wuhan: Huazhong Agricultural University, 2013. (in Chinese with English abstract) | |
[15] |
WANG Y F, PAN F B, WANG G S, et al. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions[J]. Scientia Horticulturae, 2014, 175: 9-15.
DOI URL |
[16] |
WANG S W, SHAN J, XIA Y Q, et al. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: a field experiment over two consecutive rice-growing seasons[J]. The Science of the Total Environment, 2017, 593/594: 347-356.
DOI URL |
[17] | 战秀梅, 彭靖, 王月, 等. 生物炭及炭基肥改良棕壤理化性状及提高花生产量的作用[J]. 植物营养与肥料学报, 2015, 21(6): 1633-1641. |
ZHAN X M, PENG J, WANG Y, et al. Influences of application of biochar and biochar-based fertilizer on brown soil physiochemical properties and peanut yields[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1633-1641. (in Chinese with English abstract) | |
[18] |
MCHENRY M P. Soil organic carbon, biochar, and applicable research results for increasing farm productivity under Australian agricultural conditions[J]. Communications in Soil Science and Plant Analysis, 2011, 42(10): 1187-1199.
DOI URL |
[19] |
LIN X W, XIE Z B, ZHENG J Y, et al. Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil[J]. European Journal of Soil Science, 2015, 66(2): 329-338.
DOI URL |
[20] | 岳燕. 耐盐植物生物质炭特性及对盐渍化土壤改良培肥的作用与机理[D]. 北京: 中国农业大学, 2017. |
YUE Y. The characteristics of biochar from halophyte plants and the amelioration effect and its mechanism on the salt-affected soil[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract) | |
[21] | ABRISHAMKESH S, GORJI M, ASADI H, et al. Effects of rice husk biochar application on the properties of alkaline soil and lentil growth[J]. Plant, Soil and Environment, 2016, 61(11): 475-482. |
[22] | 周丽靖, 王亚军, 谢忠奎, 等. 生物炭对兰州百合(Lilium davidii var. unicolor)连作土壤的改良作用[J]. 中国沙漠, 2019, 39(2): 134-143. |
ZHOU L J, WANG Y J, XIE Z K, et al. Improvement effect of biochar on the degraded soil of Lanzhou lily field[J]. Journal of Desert Research, 2019, 39(2): 134-143. (in Chinese with English abstract) | |
[23] | 韩召强, 陈效民, 曲成闯, 等. 生物质炭对黄瓜连作土壤理化性状、酶活性及土壤质量的持续效应[J]. 植物营养与肥料学报, 2018, 24(5): 1227-1236. |
HAN Z Q, CHEN X M, QU C C, et al. Sustained effects of biochar application on physico-chemical properties, enzyme activities and quality of soil with continuous planting of cucumber[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1227-1236. (in Chinese with English abstract) | |
[24] | 王光飞, 马艳, 郭德杰, 等. 不同用量秸秆生物炭对辣椒疫病防控效果及土壤性状的影响[J]. 土壤学报, 2017, 54(1): 204-215. |
WANG G F, MA Y, GUO D J, et al. Application-rate-dependent effects of straw biochar on control of Phytophthora blight of chilli pepper and soil properties[J]. Acta Pedologica Sinica, 2017, 54(1): 204-215. (in Chinese with English abstract) | |
[25] |
RANDOLPH P, BANSODE R R, HASSAN O A, et al. Effect of biochars produced from solid organic municipal waste on soil quality parameters[J]. Journal of Environmental Management, 2017, 192: 271-280.
DOI PMID |
[26] | 李红宇, 张巩亮, 范名宇, 等. 生物炭连续还田对苏打盐碱水稻土养分及真菌群落结构的影响[J]. 水土保持学报, 2020, 34(6): 345-351. |
LI H Y, ZHANG G L, FAN M Y, et al. Effects of continuous biochar returning on nutrients of soda saline-alkali paddy soil and fungal community structure[J]. Journal of Soil and Water Conservation, 2020, 34(6): 345-351. (in Chinese with English abstract) | |
[27] |
MAJOR J, RONDON M, MOLINA D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and Soil, 2010, 333(1/2): 117-128.
DOI URL |
[28] | 尚杰, 耿增超, 王月玲, 等. 施用生物炭对土微生物量碳、氮及酶活性的影响[J]. 中国农业科学, 2016, 49(6): 1142-1151. |
SHANG J, GENG Z C, WANG Y L, et al. Effect of biochar amendment on soil microbial biomass carbon and nitrogen and enzyme activity in tier soils[J]. Scientia Agricultura Sinica, 2016, 49(6): 1142-1151. (in Chinese with English abstract) | |
[29] | 张志龙, 陈效民, 曲成闯, 等. 生物质炭对黄瓜连作土壤中微生物量碳氮及酶活性的影响[J]. 生态学杂志, 2019, 38(5): 1384-1391. |
ZHANG Z L, CHEN X M, QU C C, et al. Effects of biochar addition on soil microbial biomass C, N and enzyme activities in cucumber continuous cropping[J]. Chinese Journal of Ecology, 2019, 38(5): 1384-1391. (in Chinese with English abstract) | |
[30] | 罗梅, 田冬, 高明, 等. 紫色土壤有机碳活性组分对生物炭施用量的响应[J]. 环境科学, 2018, 39(9): 4327-4337. |
LUO M, TIAN D, GAO M, et al. Soil organic carbon of purple soil as affected by different application of biochar[J]. Environmental Science, 2018, 39(9): 4327-4337. (in Chinese with English abstract) | |
[31] | 张洋, 倪九派, 周川, 等. 三峡库区紫色土旱坡地桑树配置模式对土壤微生物生物量碳氮的影响[J]. 中国生态农业学报, 2014, 22(7): 766-773. |
ZHANG Y, NI J P, ZHOU C, et al. Effects of configuration mode of crop-mulberry system in purple arid hillside field on SMBC and SMBN in the Three Gorges Reservoir[J]. Chinese Journal of Eco-Agriculture, 2014, 22(7): 766-773. (in Chinese with English abstract) | |
[32] |
UZOMA K C, INOUE M, ANDRY H, et al. Effect of cow manure biochar on maize productivity under sandy soil condition[J]. Soil Use and Management, 2011, 27(2): 205-212.
DOI URL |
[33] | 刘俊, 朱宇, 李志良, 等. 重金属污染土壤中施加荔枝木生物炭对向日葵植株吸收累积铅镉砷的影响[J]. 生态与农村环境学报, 2019, 35(12): 1610-1616. |
LIU J, ZHU Y, LI Z L, et al. Effects of applying lychee biochar on the absorption, accumulation of lead, cadmium and arsenic in sunflower plants in heavy metal contaminated soil[J]. Journal of Ecology and Rural Environment, 2019, 35(12): 1610-1616. (in Chinese with English abstract) | |
[34] | 何梓林, 鲜杨, 孟晓霞, 等. 菌渣生物炭对镉污染土壤性质及小白菜吸收镉的影响[J]. 水土保持学报, 2019, 33(1): 340-344. |
HE Z L, XIAN Y, MENG X X, et al. Effects of mushroom residues biochar on properties of cadmium-contaminated soil and Cd uptake by Chinese cabbage[J]. Journal of Soil and Water Conservation, 2019, 33(1): 340-344. (in Chinese with English abstract) | |
[35] | 张晗芝, 黄云, 刘钢, 等. 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响[J]. 生态环境学报, 2010, 19(11): 2713-2717. |
ZHANG H Z, HUANG Y, LIU G, et al. Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage[J]. Ecology and Environmental Sciences, 2010, 19(11): 2713-2717. (in Chinese with English abstract) | |
[36] |
KLOSS S, ZEHETNER F, WIMMER B, et al. Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions[J]. Journal of Plant Nutrition and Soil Science, 2014, 177(1): 3-15.
DOI URL |
[1] | 崔文芳, 陈静, 鲁富宽, 秦丽, 秦德志, 王利平, 高聚林. 生物炭结合氮肥减量对玉米产量和氮效率的影响[J]. 浙江农业学报, 2022, 34(2): 248-254. |
[2] | 林智文, 张鹏, 吴天昊, 单颖, 邹刚华, 赵凤亮, 郑桂萍. 秸秆直接还田与炭化还田对热带土壤-水稻系统氨挥发的影响[J]. 浙江农业学报, 2022, 34(12): 2689-2699. |
[3] | 高志远, 杨淑娜, 王朝丽, 王智豪, 奚昕琰, 何娟, 贾惠娟. 不同熏蒸方式对连作桃园土壤的影响[J]. 浙江农业学报, 2022, 34(10): 2251-2258. |
[4] | 吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687. |
[5] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
[6] | 周文志, 孙向阳, 李素艳, 张乐. 生物有机材料对滨海盐碱土的改良效果[J]. 浙江农业学报, 2019, 31(4): 607-615. |
[7] | 黄惠群, 蔡文昌, 张健瑜, 李灿, 曾和平. 炭化温度对牛粪生物炭结构性质的影响[J]. 浙江农业学报, 2018, 30(9): 1561-1568. |
[8] | 索桂芳, 吕豪豪, 汪玉瑛, 刘玉学, 何莉莉, 杨生茂. 炭基微生物肥料制备工艺及性质分析[J]. 浙江农业学报, 2018, 30(7): 1218-1228. |
[9] | 王代懿, 张丰松, 潘娟, 刘登璐, 苟体忠. 水稻秸秆生物炭对雄烯二酮在土壤中吸附与降解行为的影响[J]. 浙江农业学报, 2018, 30(4): 632-639. |
[10] | 林肖庆1,2,吕豪豪2,3,刘玉学2,3,汪玉瑛2,3,杨生茂1,2,3,*. 生物质原料及炭化温度对生物炭产率与性质的影响[J]. 浙江农业学报, 2016, 28(7): 1216-. |
[11] | 邵泱峰1,梅洪飞1,潘忠潮1,刘欢2,王超琦2. 玉米秸秆还田对土壤有机碳、微生物功能多样性及甘蓝产量的影响[J]. 浙江农业学报, 2016, 28(5): 838-. |
[12] | 尤方芳1,赵铭钦1,*,陈发元1,孙翠红1,许跃奇1,李慧2,金洪石3,金江华3. 生物炭与不同肥料配施对镉胁迫下烟株生长的影响[J]. 浙江农业学报, 2016, 28(3): 489-. |
[13] | 李静静,丁松爽,李艳平,云菲,阎海涛,王志萌,刘国顺*. 生物炭与氮肥配施对烤烟干物质积累及土壤生物学特性的影响[J]. 浙江农业学报, 2016, 28(1): 96-. |
[14] | 姜玉萍;杨晓峰;张兆辉;陈春宏;王良军*. 生物炭对土壤环境及作物生长影响的研究进展[J]. , 2013, 25(2): 0-415. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||