浙江农业学报 ›› 2022, Vol. 34 ›› Issue (12): 2689-2699.DOI: 10.3969/j.issn.1004-1524.2022.12.12
林智文1,2(), 张鹏1,2, 吴天昊2,3, 单颖2, 邹刚华2, 赵凤亮2,*(
), 郑桂萍1,*(
)
收稿日期:
2022-01-12
出版日期:
2022-12-25
发布日期:
2022-12-26
通讯作者:
赵凤亮,郑桂萍
作者简介:
郑桂萍,E-mail: byndzgp@163.com基金资助:
LIN Zhiwen1,2(), ZHANG Peng1,2, WU Tianhao2,3, SHAN Ying2, ZOU Ganghua2, ZHAO Fengliang2,*(
), ZHENG Guiping1,*(
)
Received:
2022-01-12
Online:
2022-12-25
Published:
2022-12-26
Contact:
ZHAO Fengliang,ZHENG Guiping
摘要:
氨挥发是稻田氮损失的主要形式之一。本研究采用温室土柱试验方法,设置不施氮肥(0N)、秸秆还田 (ST)、生物炭(秸秆炭化)还田(BI)、常规施肥(CF)、秸秆还田配施氮肥(NST)、生物炭还田配施氮肥(NBI)6个处理,研究等量氮素投入条件下秸秆还田及其炭化还田对热带土壤-水稻系统氨挥发排放的影响。结果表明,与CF处理相比,NST处理在分蘖期显著(P<0.05)降低了田面水的pH值,提高了田面水的NH4+-N含量;NBI处理显著(P<0.05)提高了水稻成熟期的土壤pH值和土壤NH4+-N含量,降低了土壤NO3--N含量。总的来看,NBI处理在试验条件下对土壤氨挥发具有较好的抑制作用,氨累积挥发量较CF处理显著(P<0.05)降低28.9%。
中图分类号:
林智文, 张鹏, 吴天昊, 单颖, 邹刚华, 赵凤亮, 郑桂萍. 秸秆直接还田与炭化还田对热带土壤-水稻系统氨挥发的影响[J]. 浙江农业学报, 2022, 34(12): 2689-2699.
LIN Zhiwen, ZHANG Peng, WU Tianhao, SHAN Ying, ZOU Ganghua, ZHAO Fengliang, ZHENG Guiping. Effects of straw and straw-derived biochar returning on ammonia volatilization in tropical soil-rice system[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2689-2699.
图1 水稻不同生育期各处理田面水的pH值动态变化 箭头表示施肥时期。下同。
Fig.1 Dynamic change of pH values of surface water under different treatments at different growth periods The arrow indicates the fertilization period. The same as below.
处理 Treatment | 分蘖期 Tillering stage | 穗分化期 Panicle differentiation stage | 成熟期 Mature stage |
---|---|---|---|
0N | 6.60±0.02 c | 6.54±0.05 bc | 6.92±0.07 a |
ST | 6.47±0.03 d | 6.49±0.05 c | 6.58±0.03 bc |
BI | 6.71±0.03 ab | 6.55±0.02 bc | 6.83±0.06 a |
CF | 6.72±0.02 ab | 6.64±0.03 ab | 6.39±0.03 c |
NST | 6.66±0.01 bc | 6.62±0.03 ab | 6.52±0.10 bc |
NBI | 6.75±0.02 a | 6.72±0.03 a | 6.72±0.07 ab |
表1 水稻不同生育期各处理的土壤pH值
Table 1 Soil pH value under different treatments at different growth stages
处理 Treatment | 分蘖期 Tillering stage | 穗分化期 Panicle differentiation stage | 成熟期 Mature stage |
---|---|---|---|
0N | 6.60±0.02 c | 6.54±0.05 bc | 6.92±0.07 a |
ST | 6.47±0.03 d | 6.49±0.05 c | 6.58±0.03 bc |
BI | 6.71±0.03 ab | 6.55±0.02 bc | 6.83±0.06 a |
CF | 6.72±0.02 ab | 6.64±0.03 ab | 6.39±0.03 c |
NST | 6.66±0.01 bc | 6.62±0.03 ab | 6.52±0.10 bc |
NBI | 6.75±0.02 a | 6.72±0.03 a | 6.72±0.07 ab |
图2 水稻不同生育期各处理田面水NH4+-N、NO3--N含量的动态变化
Fig.2 Dynamic changes of NH4+-N and NO3--N contents in surface water under different treatments at different growth stages
图3 水稻不同生育期各处理土壤NH4+-N含量的动态变化 同一时期不同处理柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.3 Dynamic changes of soil NH4+-N content under different treatments at different growth stages Bars marked without the same letters indicated significant difference at P<0.05 within treatments at the same growth period. The same as below.
指标 Index | 氨挥发排放通量 Ammonia volatilization emission flux | 田面水pH值 pH value of surface water | 田面水NH4+-N 含量 NO3--N content of surface water | 田面水NO3--N 含量 NO3--N content of surface water | 土壤pH值 pH value of soil | 土壤NH4+-N 含量 NH4+-N content of soil |
---|---|---|---|---|---|---|
田面水pH | -0.035 | |||||
pH value of surface water | ||||||
田面水NH4+-N含量 | 0.198* | -0.193* | ||||
NH4+-N content of surface water | ||||||
田面水NO3--N含量 | 0.168 | 0.331** | -0.050 | |||
NO3--N content of surface water | ||||||
土壤pH值 pH value of soil | -0.163 | 0.159 | 0.016 | -0.030 | ||
土壤NH4+-N含量 | 0.233 | -0.189 | 0.284* | 0.193 | 0.072 | |
NH4+-N content of soil | ||||||
土壤NO3--N含量含量 | -0.256 | 0.275* | -0.146 | -0.035 | -0.419** | -0.468** |
NO3--N content of soil |
表2 氨挥发排放通量与环境因子的相关性
Table 2 Correlation within ammonia volatilization flux and environmental factors
指标 Index | 氨挥发排放通量 Ammonia volatilization emission flux | 田面水pH值 pH value of surface water | 田面水NH4+-N 含量 NO3--N content of surface water | 田面水NO3--N 含量 NO3--N content of surface water | 土壤pH值 pH value of soil | 土壤NH4+-N 含量 NH4+-N content of soil |
---|---|---|---|---|---|---|
田面水pH | -0.035 | |||||
pH value of surface water | ||||||
田面水NH4+-N含量 | 0.198* | -0.193* | ||||
NH4+-N content of surface water | ||||||
田面水NO3--N含量 | 0.168 | 0.331** | -0.050 | |||
NO3--N content of surface water | ||||||
土壤pH值 pH value of soil | -0.163 | 0.159 | 0.016 | -0.030 | ||
土壤NH4+-N含量 | 0.233 | -0.189 | 0.284* | 0.193 | 0.072 | |
NH4+-N content of soil | ||||||
土壤NO3--N含量含量 | -0.256 | 0.275* | -0.146 | -0.035 | -0.419** | -0.468** |
NO3--N content of soil |
[1] | 赵凌, 赵春芳, 周丽慧, 等. 中国水稻生产现状与发展趋势[J]. 江苏农业科学, 2015, 43(10): 105-107. |
ZHAO L, ZHAO C F, ZHOU L H, et al. Current situation and development trend of rice production in China[J]. Jiangsu Agricultural Sciences, 2015, 43(10): 105-107. (in Chinese) | |
[2] | 朱兆良. 中国土壤氮素研究[J]. 土壤学报, 2008, 45(5): 778-783. |
ZHU Z L. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5): 778-783. (in Chinese with English abstract) | |
[3] | 朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境, 2000, 9(1): 1-6. |
ZHU Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Sciences, 2000, 9(1): 1-6. (in Chinese with English abstract) | |
[4] | 肖其亮, 朱坚, 彭华, 等. 稻田氨挥发损失及减排技术研究进展[J]. 农业环境科学学报, 2021, 40(1): 16-25. |
XIAO Q L, ZHU J, PENG H, et al. Ammonia volatilization loss and emission reduction measures in paddy fields[J]. Journal of Agro-Environment Science, 2021, 40(1): 16-25. (in Chinese with English abstract) | |
[5] | 张国, 逯非, 赵红, 等. 我国农作物秸秆资源化利用现状及农户对秸秆还田的认知态度[J]. 农业环境科学学报, 2017, 36(5): 981-988. |
ZHANG G, LU F, ZHAO H, et al. Residue usage and farmers' recognition and attitude toward residue retention in China's croplands[J]. Journal of Agro-Environment Science, 2017, 36(5): 981-988. (in Chinese with English abstract) | |
[6] | 朱捍华, 黄道友, 刘守龙, 等. 稻草易地还土对丘陵红壤有机质和主要物理性质的影响[J]. 应用生态学报, 2007, 18(11): 2497-2502. |
ZHU H H, HUANG D Y, LIU S L, et al. Effects of ex situ rice straw incorporation on organic matter content and main physical properties of hilly red soil[J]. Chinese Journal of Applied Ecology, 2007, 18(11): 2497-2502. (in Chinese with English abstract) | |
[7] | 汪军, 王德建, 张刚, 等. 麦秸全量还田下太湖地区两种典型水稻土稻季氨挥发特性比较[J]. 环境科学, 2013, 34(1): 27-33. |
WANG J, WANG D J, ZHANG G, et al. Comparing the ammonia volatilization characteristic of two typical paddy soil with total wheat straw returning in Taihu Lake region[J]. Environmental Science, 2013, 34(1): 27-33. (in Chinese with English abstract)
DOI URL |
|
[8] | 张刚, 王德建, 俞元春, 等. 秸秆全量还田与氮肥用量对水稻产量、氮肥利用率及氮素损失的影响[J]. 植物营养与肥料学报, 2016, 22(4): 877-885. |
ZHANG G, WANG D J, YU Y C, et al. Effects of straw incorporation plus nitrogen fertilizer on rice yield, nitrogen use efficiency and nitrogen loss[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 877-885. (in Chinese with English abstract) | |
[9] |
SUN L Y, WU Z, MA Y C, et al. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China[J]. Atmospheric Environment, 2018, 181: 97-105.
DOI URL |
[10] |
LIU S M, LI Y W, XU J Z, et al. Biochar partially offset the increased ammonia volatilization from salt-affected soil[J]. Archives of Agronomy and Soil Science, 2021, 67(9): 1202-1216.
DOI URL |
[11] |
SUN X, ZHONG T, ZHANG L, et al. Reducing ammonia volatilization from paddy field with rice straw derived biochar[J]. Science of the Total Environment, 2019, 660: 512-518.
DOI URL |
[12] |
SUN H J, ZHANG Y, YANG Y T, et al. Effect of biofertilizer and wheat straw biochar application on nitrous oxide emission and ammonia volatilization from paddy soil[J]. Environmental Pollution, 2021, 275: 116640.
DOI URL |
[13] |
DONG Y B, WU Z, ZHANG X, et al. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system[J]. Field Crops Research, 2019, 241: 107568.
DOI URL |
[14] |
许云翔, 何莉莉, 陈金媛, 等. 生物炭对农田土壤氨挥发的影响机制研究进展[J]. 应用生态学报, 2020, 31(12): 4312-4320.
DOI |
XU Y X, HE L L, CHEN J Y, et al. Effects of biochar on ammonia volatilization from farmland soil: a review[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4312-4320. (in Chinese with English abstract) | |
[15] |
WANG S W, SHAN J, XIA Y Q, et al. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: a field experiment over two consecutive rice-growing seasons[J]. Science of the Total Environment, 2017, 593/594: 347-356.
DOI URL |
[16] | 王大鹏, 杜玉赫, 罗雪华, 等. 橡胶林下砖红壤不同氮肥处理氨挥发特征[J]. 生态环境学报, 2018, 27(4): 685-691. |
WANG D P, DU Y H, LUO X H, et al. Characteristics of ammonia volatilization under different nitrogen managements in red latosol of rubber plantation[J]. Ecology and Environmental Sciences, 2018, 27(4): 685-691. (in Chinese with English abstract) | |
[17] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[18] | 黄思怡, 田昌, 谢桂先, 等. 控释尿素减少双季稻田氨挥发的主要机理和适宜用量[J]. 植物营养与肥料学报, 2019, 25(12): 2102-2112. |
HUANG S Y, TIAN C, XIE G X, et al. Mechanism and suitable application dosage of controlled-release urea effectively reducing ammonia volatilization in double-cropping paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2102-2112. (in Chinese with English abstract) | |
[19] | 张文学, 孙刚, 何萍, 等. 脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1411-1419. |
ZHANG W X, SUN G, HE P, et al. Effects of urease and nitrification inhibitors on ammonia volatilization from paddy fields[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1411-1419. (in Chinese with English abstract) | |
[20] | 李菊梅, 徐明岗, 秦道珠, 等. 有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J]. 植物营养与肥料学报, 2005, 11(1): 51-56. |
LI J M, XU M G, QIN D Z, et al. Effects of chemical fertilizers application combined with manure on ammonia volatilization and rice yield in red paddy soil[J]. Plant Nutrition and Fertilizing Science, 2005, 11(1): 51-56. (in Chinese with English abstract) | |
[21] |
JOSEPH S D, CAMPS-ARBESTAIN M, LIN Y, et al. An investigation into the reactions of biochar in soil[J]. Soil Research, 2010, 48(7): 501.
DOI URL |
[22] | 董文旭, 胡春胜, 张玉铭. 不同施肥土壤对尿素NH3挥发的影响[J]. 干旱地区农业研究, 2005, 23(2): 76-79. |
DONG W X, HU C S, ZHANG Y M. Effects of different soil fertilizations on NH3 volatilization of urea[J]. Agricultural Research in the Arid Areas, 2005, 23(2): 76-79. (in Chinese with English abstract) | |
[23] |
XU S S, HOU P F, XUE L H, et al. Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation[J]. Atmospheric Environment, 2017, 169: 1-10.
DOI URL |
[24] |
ANG H I, LOU K Y, RAJAPAKSHA A U, et al. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars[J]. Environmental Science and Pollution Research International, 2018, 25(26): 25638-25647.
DOI PMID |
[25] | 赵洁, 贺宇宏, 张晓明, 等. 酸碱改性对生物炭吸附Cr(VI)性能的影响[J]. 环境工程, 2020, 38(6):28-34. |
ZHAO J, HE Y H, ZHANG X M, et al. Effect on Cr(VI) adsorption performance of acid-base modified biochar[J]. Environmental Engineering, 2020, 38(6):28-34. (in Chinese with English abstract) | |
[26] | DING Y, LIU Y X, WU W X, et al. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns[J]. Water, Air, & Soil Pollution, 2010, 213(1/2/3/4): 47-55. |
[27] |
BENGTSSON G, BENGTSON P, MÅNSSON K F. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology and Biochemistry, 2003, 35(1): 143-154.
DOI URL |
[28] | TAMMEORG P, SIMOJOKI A, MÄKELÄ P, et al. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand[J]. Agriculture, Ecosystems & Environment, 2014, 191: 108-116. |
[29] | 张丰, 刘畅, 王喆, 等. 不同吸附特性的稻草生物炭对稻田氨挥发和水稻产量的影响[J]. 农业工程学报, 2021, 37(9): 100-109. |
ZHANG F, LIU C, WANG Z, et al. Effects of rice straw biochar with different adsorption characteristics on ammonia volatilization from paddy field and rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 100-109. (in Chinese with English abstract) | |
[30] |
SUN Y D, XIA G M, HE Z L, et al. Zeolite amendment coupled with alternate wetting and drying to reduce nitrogen loss and enhance rice production[J]. Field Crops Research, 2019, 235: 95-103.
DOI URL |
[31] |
MANDAL S, THANGARAJAN R, BOLAN N S, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat[J]. Chemosphere, 2016, 142: 120-127.
DOI PMID |
[32] |
吴佩聪, 张鹏, 单颖, 等. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687.
DOI |
WU P C, ZHANG P, SHAN Y, et al. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system[J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687. (in Chinese with English abstract)
DOI |
|
[33] | 余姗, 薛利红, 花昀, 等. 水热炭减少稻田氨挥发损失的效果与机制[J]. 环境科学, 2020, 41(2): 922-931. |
YU S, XUE L H, HUA Y, et al. Effect of applying hydrochar for reduction of ammonia volatilization and mechanisms in paddy soil[J]. Environmental Science, 2020, 41(2): 922-931. (in Chinese with English abstract)
DOI URL |
|
[34] |
SUN H J, ZHANG H L, XIAO H D, et al. Wheat straw biochar application increases ammonia volatilization from an urban compacted soil giving a short-term reduction in fertilizer nitrogen use efficiency[J]. Journal of Soils and Sediments, 2019, 19(4): 1624-1631.
DOI URL |
[35] | 邹娟, 胡学玉, 张阳阳, 等. 不同地表条件下生物炭对土壤氨挥发的影响[J]. 环境科学, 2018, 39(1): 348-354. |
ZOU J, HU X Y, ZHANG Y Y, et al. Effect of biochar on ammonia volatilization from soils of different surface conditions[J]. Environmental Science, 2018, 39(1): 348-354. (in Chinese with English abstract) | |
[36] | 周玉玲, 侯朋福, 李刚华, 等. 两种土壤增效剂对稻田氨挥发排放的影响[J]. 环境科学, 2019, 40(8): 3746-3752. |
ZHOU Y L, HOU P F, LI G H, et al. Effect of two soil synergists on ammonia volatilization in paddy fields[J]. Environmental Science, 2019, 40(8): 3746-3752. (in Chinese with English abstract) | |
[37] |
MANDAL S, DONNER E, SMITH E, et al. Biochar with near-neutral pH reduces ammonia volatilization and improves plant growth in a soil-plant system: a closed chamber experiment[J]. Science of the Total Environment, 2019, 697: 134114.
DOI URL |
[1] | 徐洋, 任奕林, 王浩杰, 黄秋航, 邢博源, 曹红亮. 不同制备条件下油菜秸秆生物炭用作缓释载体的综合评价[J]. 浙江农业学报, 2023, 35(4): 893-902. |
[2] | 阮泽斌, 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2): 394-402. |
[3] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[4] | 崔文芳, 陈静, 鲁富宽, 秦丽, 秦德志, 王利平, 高聚林. 生物炭结合氮肥减量对玉米产量和氮效率的影响[J]. 浙江农业学报, 2022, 34(2): 248-254. |
[5] | 夏苏敬, 乔月, 朱建强. 调整氮肥基追比减少稻田氮素损失和保证直播稻产量[J]. 浙江农业学报, 2022, 34(11): 2482-2490. |
[6] | 吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687. |
[7] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
[8] | 苏瑶, 贾生强, 何振超, 杨艳华, 喻曼, 陈喜靖, 沈阿林. 利用响应曲面法优化秸秆腐熟剂的腐解条件[J]. 浙江农业学报, 2019, 31(5): 798-805. |
[9] | 周文志, 孙向阳, 李素艳, 张乐. 生物有机材料对滨海盐碱土的改良效果[J]. 浙江农业学报, 2019, 31(4): 607-615. |
[10] | 黄惠群, 蔡文昌, 张健瑜, 李灿, 曾和平. 炭化温度对牛粪生物炭结构性质的影响[J]. 浙江农业学报, 2018, 30(9): 1561-1568. |
[11] | 索桂芳, 吕豪豪, 汪玉瑛, 刘玉学, 何莉莉, 杨生茂. 炭基微生物肥料制备工艺及性质分析[J]. 浙江农业学报, 2018, 30(7): 1218-1228. |
[12] | 王代懿, 张丰松, 潘娟, 刘登璐, 苟体忠. 水稻秸秆生物炭对雄烯二酮在土壤中吸附与降解行为的影响[J]. 浙江农业学报, 2018, 30(4): 632-639. |
[13] | 聂冬1,金明姬2,*,刘永3,严昌国2. 牛粪与水稻秸秆混合厌氧发酵工艺优化及动力[J]. 浙江农业学报, 2016, 28(8): 1421-. |
[14] | 林肖庆1,2,吕豪豪2,3,刘玉学2,3,汪玉瑛2,3,杨生茂1,2,3,*. 生物质原料及炭化温度对生物炭产率与性质的影响[J]. 浙江农业学报, 2016, 28(7): 1216-. |
[15] | 尤方芳1,赵铭钦1,*,陈发元1,孙翠红1,许跃奇1,李慧2,金洪石3,金江华3. 生物炭与不同肥料配施对镉胁迫下烟株生长的影响[J]. 浙江农业学报, 2016, 28(3): 489-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 703
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1048
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||