浙江农业学报 ›› 2022, Vol. 34 ›› Issue (12): 2689-2699.DOI: 10.3969/j.issn.1004-1524.2022.12.12
林智文1,2(
), 张鹏1,2, 吴天昊2,3, 单颖2, 邹刚华2, 赵凤亮2,*(
), 郑桂萍1,*(
)
收稿日期:2022-01-12
出版日期:2022-12-25
发布日期:2022-12-26
作者简介:郑桂萍,E-mail: byndzgp@163.com通讯作者:
赵凤亮,郑桂萍
基金资助:
LIN Zhiwen1,2(
), ZHANG Peng1,2, WU Tianhao2,3, SHAN Ying2, ZOU Ganghua2, ZHAO Fengliang2,*(
), ZHENG Guiping1,*(
)
Received:2022-01-12
Online:2022-12-25
Published:2022-12-26
Contact:
ZHAO Fengliang,ZHENG Guiping
摘要:
氨挥发是稻田氮损失的主要形式之一。本研究采用温室土柱试验方法,设置不施氮肥(0N)、秸秆还田 (ST)、生物炭(秸秆炭化)还田(BI)、常规施肥(CF)、秸秆还田配施氮肥(NST)、生物炭还田配施氮肥(NBI)6个处理,研究等量氮素投入条件下秸秆还田及其炭化还田对热带土壤-水稻系统氨挥发排放的影响。结果表明,与CF处理相比,NST处理在分蘖期显著(P<0.05)降低了田面水的pH值,提高了田面水的NH4+-N含量;NBI处理显著(P<0.05)提高了水稻成熟期的土壤pH值和土壤NH4+-N含量,降低了土壤NO3--N含量。总的来看,NBI处理在试验条件下对土壤氨挥发具有较好的抑制作用,氨累积挥发量较CF处理显著(P<0.05)降低28.9%。
中图分类号:
林智文, 张鹏, 吴天昊, 单颖, 邹刚华, 赵凤亮, 郑桂萍. 秸秆直接还田与炭化还田对热带土壤-水稻系统氨挥发的影响[J]. 浙江农业学报, 2022, 34(12): 2689-2699.
LIN Zhiwen, ZHANG Peng, WU Tianhao, SHAN Ying, ZOU Ganghua, ZHAO Fengliang, ZHENG Guiping. Effects of straw and straw-derived biochar returning on ammonia volatilization in tropical soil-rice system[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2689-2699.
图1 水稻不同生育期各处理田面水的pH值动态变化 箭头表示施肥时期。下同。
Fig.1 Dynamic change of pH values of surface water under different treatments at different growth periods The arrow indicates the fertilization period. The same as below.
| 处理 Treatment | 分蘖期 Tillering stage | 穗分化期 Panicle differentiation stage | 成熟期 Mature stage |
|---|---|---|---|
| 0N | 6.60±0.02 c | 6.54±0.05 bc | 6.92±0.07 a |
| ST | 6.47±0.03 d | 6.49±0.05 c | 6.58±0.03 bc |
| BI | 6.71±0.03 ab | 6.55±0.02 bc | 6.83±0.06 a |
| CF | 6.72±0.02 ab | 6.64±0.03 ab | 6.39±0.03 c |
| NST | 6.66±0.01 bc | 6.62±0.03 ab | 6.52±0.10 bc |
| NBI | 6.75±0.02 a | 6.72±0.03 a | 6.72±0.07 ab |
表1 水稻不同生育期各处理的土壤pH值
Table 1 Soil pH value under different treatments at different growth stages
| 处理 Treatment | 分蘖期 Tillering stage | 穗分化期 Panicle differentiation stage | 成熟期 Mature stage |
|---|---|---|---|
| 0N | 6.60±0.02 c | 6.54±0.05 bc | 6.92±0.07 a |
| ST | 6.47±0.03 d | 6.49±0.05 c | 6.58±0.03 bc |
| BI | 6.71±0.03 ab | 6.55±0.02 bc | 6.83±0.06 a |
| CF | 6.72±0.02 ab | 6.64±0.03 ab | 6.39±0.03 c |
| NST | 6.66±0.01 bc | 6.62±0.03 ab | 6.52±0.10 bc |
| NBI | 6.75±0.02 a | 6.72±0.03 a | 6.72±0.07 ab |
图2 水稻不同生育期各处理田面水NH4+-N、NO3--N含量的动态变化
Fig.2 Dynamic changes of NH4+-N and NO3--N contents in surface water under different treatments at different growth stages
图3 水稻不同生育期各处理土壤NH4+-N含量的动态变化 同一时期不同处理柱上无相同字母的表示差异显著(P<0.05)。下同。
Fig.3 Dynamic changes of soil NH4+-N content under different treatments at different growth stages Bars marked without the same letters indicated significant difference at P<0.05 within treatments at the same growth period. The same as below.
| 指标 Index | 氨挥发排放通量 Ammonia volatilization emission flux | 田面水pH值 pH value of surface water | 田面水NH4+-N 含量 NO3--N content of surface water | 田面水NO3--N 含量 NO3--N content of surface water | 土壤pH值 pH value of soil | 土壤NH4+-N 含量 NH4+-N content of soil |
|---|---|---|---|---|---|---|
| 田面水pH | -0.035 | |||||
| pH value of surface water | ||||||
| 田面水NH4+-N含量 | 0.198* | -0.193* | ||||
| NH4+-N content of surface water | ||||||
| 田面水NO3--N含量 | 0.168 | 0.331** | -0.050 | |||
| NO3--N content of surface water | ||||||
| 土壤pH值 pH value of soil | -0.163 | 0.159 | 0.016 | -0.030 | ||
| 土壤NH4+-N含量 | 0.233 | -0.189 | 0.284* | 0.193 | 0.072 | |
| NH4+-N content of soil | ||||||
| 土壤NO3--N含量含量 | -0.256 | 0.275* | -0.146 | -0.035 | -0.419** | -0.468** |
| NO3--N content of soil |
表2 氨挥发排放通量与环境因子的相关性
Table 2 Correlation within ammonia volatilization flux and environmental factors
| 指标 Index | 氨挥发排放通量 Ammonia volatilization emission flux | 田面水pH值 pH value of surface water | 田面水NH4+-N 含量 NO3--N content of surface water | 田面水NO3--N 含量 NO3--N content of surface water | 土壤pH值 pH value of soil | 土壤NH4+-N 含量 NH4+-N content of soil |
|---|---|---|---|---|---|---|
| 田面水pH | -0.035 | |||||
| pH value of surface water | ||||||
| 田面水NH4+-N含量 | 0.198* | -0.193* | ||||
| NH4+-N content of surface water | ||||||
| 田面水NO3--N含量 | 0.168 | 0.331** | -0.050 | |||
| NO3--N content of surface water | ||||||
| 土壤pH值 pH value of soil | -0.163 | 0.159 | 0.016 | -0.030 | ||
| 土壤NH4+-N含量 | 0.233 | -0.189 | 0.284* | 0.193 | 0.072 | |
| NH4+-N content of soil | ||||||
| 土壤NO3--N含量含量 | -0.256 | 0.275* | -0.146 | -0.035 | -0.419** | -0.468** |
| NO3--N content of soil |
| [1] | 赵凌, 赵春芳, 周丽慧, 等. 中国水稻生产现状与发展趋势[J]. 江苏农业科学, 2015, 43(10): 105-107. |
| ZHAO L, ZHAO C F, ZHOU L H, et al. Current situation and development trend of rice production in China[J]. Jiangsu Agricultural Sciences, 2015, 43(10): 105-107. (in Chinese) | |
| [2] | 朱兆良. 中国土壤氮素研究[J]. 土壤学报, 2008, 45(5): 778-783. |
| ZHU Z L. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5): 778-783. (in Chinese with English abstract) | |
| [3] | 朱兆良. 农田中氮肥的损失与对策[J]. 土壤与环境, 2000, 9(1): 1-6. |
| ZHU Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Sciences, 2000, 9(1): 1-6. (in Chinese with English abstract) | |
| [4] | 肖其亮, 朱坚, 彭华, 等. 稻田氨挥发损失及减排技术研究进展[J]. 农业环境科学学报, 2021, 40(1): 16-25. |
| XIAO Q L, ZHU J, PENG H, et al. Ammonia volatilization loss and emission reduction measures in paddy fields[J]. Journal of Agro-Environment Science, 2021, 40(1): 16-25. (in Chinese with English abstract) | |
| [5] | 张国, 逯非, 赵红, 等. 我国农作物秸秆资源化利用现状及农户对秸秆还田的认知态度[J]. 农业环境科学学报, 2017, 36(5): 981-988. |
| ZHANG G, LU F, ZHAO H, et al. Residue usage and farmers' recognition and attitude toward residue retention in China's croplands[J]. Journal of Agro-Environment Science, 2017, 36(5): 981-988. (in Chinese with English abstract) | |
| [6] | 朱捍华, 黄道友, 刘守龙, 等. 稻草易地还土对丘陵红壤有机质和主要物理性质的影响[J]. 应用生态学报, 2007, 18(11): 2497-2502. |
| ZHU H H, HUANG D Y, LIU S L, et al. Effects of ex situ rice straw incorporation on organic matter content and main physical properties of hilly red soil[J]. Chinese Journal of Applied Ecology, 2007, 18(11): 2497-2502. (in Chinese with English abstract) | |
| [7] | 汪军, 王德建, 张刚, 等. 麦秸全量还田下太湖地区两种典型水稻土稻季氨挥发特性比较[J]. 环境科学, 2013, 34(1): 27-33. |
|
WANG J, WANG D J, ZHANG G, et al. Comparing the ammonia volatilization characteristic of two typical paddy soil with total wheat straw returning in Taihu Lake region[J]. Environmental Science, 2013, 34(1): 27-33. (in Chinese with English abstract)
DOI URL |
|
| [8] | 张刚, 王德建, 俞元春, 等. 秸秆全量还田与氮肥用量对水稻产量、氮肥利用率及氮素损失的影响[J]. 植物营养与肥料学报, 2016, 22(4): 877-885. |
| ZHANG G, WANG D J, YU Y C, et al. Effects of straw incorporation plus nitrogen fertilizer on rice yield, nitrogen use efficiency and nitrogen loss[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 877-885. (in Chinese with English abstract) | |
| [9] |
SUN L Y, WU Z, MA Y C, et al. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China[J]. Atmospheric Environment, 2018, 181: 97-105.
DOI URL |
| [10] |
LIU S M, LI Y W, XU J Z, et al. Biochar partially offset the increased ammonia volatilization from salt-affected soil[J]. Archives of Agronomy and Soil Science, 2021, 67(9): 1202-1216.
DOI URL |
| [11] |
SUN X, ZHONG T, ZHANG L, et al. Reducing ammonia volatilization from paddy field with rice straw derived biochar[J]. Science of the Total Environment, 2019, 660: 512-518.
DOI URL |
| [12] |
SUN H J, ZHANG Y, YANG Y T, et al. Effect of biofertilizer and wheat straw biochar application on nitrous oxide emission and ammonia volatilization from paddy soil[J]. Environmental Pollution, 2021, 275: 116640.
DOI URL |
| [13] |
DONG Y B, WU Z, ZHANG X, et al. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system[J]. Field Crops Research, 2019, 241: 107568.
DOI URL |
| [14] |
许云翔, 何莉莉, 陈金媛, 等. 生物炭对农田土壤氨挥发的影响机制研究进展[J]. 应用生态学报, 2020, 31(12): 4312-4320.
DOI |
| XU Y X, HE L L, CHEN J Y, et al. Effects of biochar on ammonia volatilization from farmland soil: a review[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4312-4320. (in Chinese with English abstract) | |
| [15] |
WANG S W, SHAN J, XIA Y Q, et al. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: a field experiment over two consecutive rice-growing seasons[J]. Science of the Total Environment, 2017, 593/594: 347-356.
DOI URL |
| [16] | 王大鹏, 杜玉赫, 罗雪华, 等. 橡胶林下砖红壤不同氮肥处理氨挥发特征[J]. 生态环境学报, 2018, 27(4): 685-691. |
| WANG D P, DU Y H, LUO X H, et al. Characteristics of ammonia volatilization under different nitrogen managements in red latosol of rubber plantation[J]. Ecology and Environmental Sciences, 2018, 27(4): 685-691. (in Chinese with English abstract) | |
| [17] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
| [18] | 黄思怡, 田昌, 谢桂先, 等. 控释尿素减少双季稻田氨挥发的主要机理和适宜用量[J]. 植物营养与肥料学报, 2019, 25(12): 2102-2112. |
| HUANG S Y, TIAN C, XIE G X, et al. Mechanism and suitable application dosage of controlled-release urea effectively reducing ammonia volatilization in double-cropping paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2102-2112. (in Chinese with English abstract) | |
| [19] | 张文学, 孙刚, 何萍, 等. 脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响[J]. 植物营养与肥料学报, 2013, 19(6): 1411-1419. |
| ZHANG W X, SUN G, HE P, et al. Effects of urease and nitrification inhibitors on ammonia volatilization from paddy fields[J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1411-1419. (in Chinese with English abstract) | |
| [20] | 李菊梅, 徐明岗, 秦道珠, 等. 有机肥无机肥配施对稻田氨挥发和水稻产量的影响[J]. 植物营养与肥料学报, 2005, 11(1): 51-56. |
| LI J M, XU M G, QIN D Z, et al. Effects of chemical fertilizers application combined with manure on ammonia volatilization and rice yield in red paddy soil[J]. Plant Nutrition and Fertilizing Science, 2005, 11(1): 51-56. (in Chinese with English abstract) | |
| [21] |
JOSEPH S D, CAMPS-ARBESTAIN M, LIN Y, et al. An investigation into the reactions of biochar in soil[J]. Soil Research, 2010, 48(7): 501.
DOI URL |
| [22] | 董文旭, 胡春胜, 张玉铭. 不同施肥土壤对尿素NH3挥发的影响[J]. 干旱地区农业研究, 2005, 23(2): 76-79. |
| DONG W X, HU C S, ZHANG Y M. Effects of different soil fertilizations on NH3 volatilization of urea[J]. Agricultural Research in the Arid Areas, 2005, 23(2): 76-79. (in Chinese with English abstract) | |
| [23] |
XU S S, HOU P F, XUE L H, et al. Treated domestic sewage irrigation significantly decreased the CH4, N2O and NH3 emissions from paddy fields with straw incorporation[J]. Atmospheric Environment, 2017, 169: 1-10.
DOI URL |
| [24] |
ANG H I, LOU K Y, RAJAPAKSHA A U, et al. Adsorption of ammonium in aqueous solutions by pine sawdust and wheat straw biochars[J]. Environmental Science and Pollution Research International, 2018, 25(26): 25638-25647.
DOI PMID |
| [25] | 赵洁, 贺宇宏, 张晓明, 等. 酸碱改性对生物炭吸附Cr(VI)性能的影响[J]. 环境工程, 2020, 38(6):28-34. |
| ZHAO J, HE Y H, ZHANG X M, et al. Effect on Cr(VI) adsorption performance of acid-base modified biochar[J]. Environmental Engineering, 2020, 38(6):28-34. (in Chinese with English abstract) | |
| [26] | DING Y, LIU Y X, WU W X, et al. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns[J]. Water, Air, & Soil Pollution, 2010, 213(1/2/3/4): 47-55. |
| [27] |
BENGTSSON G, BENGTSON P, MÅNSSON K F. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology and Biochemistry, 2003, 35(1): 143-154.
DOI URL |
| [28] | TAMMEORG P, SIMOJOKI A, MÄKELÄ P, et al. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertiliser on a boreal loamy sand[J]. Agriculture, Ecosystems & Environment, 2014, 191: 108-116. |
| [29] | 张丰, 刘畅, 王喆, 等. 不同吸附特性的稻草生物炭对稻田氨挥发和水稻产量的影响[J]. 农业工程学报, 2021, 37(9): 100-109. |
| ZHANG F, LIU C, WANG Z, et al. Effects of rice straw biochar with different adsorption characteristics on ammonia volatilization from paddy field and rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 100-109. (in Chinese with English abstract) | |
| [30] |
SUN Y D, XIA G M, HE Z L, et al. Zeolite amendment coupled with alternate wetting and drying to reduce nitrogen loss and enhance rice production[J]. Field Crops Research, 2019, 235: 95-103.
DOI URL |
| [31] |
MANDAL S, THANGARAJAN R, BOLAN N S, et al. Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat[J]. Chemosphere, 2016, 142: 120-127.
DOI PMID |
| [32] |
吴佩聪, 张鹏, 单颖, 等. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687.
DOI |
|
WU P C, ZHANG P, SHAN Y, et al. Effects of staw-derived biochar on ammonia volatilization in tropical soil-rice system[J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 678-687. (in Chinese with English abstract)
DOI |
|
| [33] | 余姗, 薛利红, 花昀, 等. 水热炭减少稻田氨挥发损失的效果与机制[J]. 环境科学, 2020, 41(2): 922-931. |
|
YU S, XUE L H, HUA Y, et al. Effect of applying hydrochar for reduction of ammonia volatilization and mechanisms in paddy soil[J]. Environmental Science, 2020, 41(2): 922-931. (in Chinese with English abstract)
DOI URL |
|
| [34] |
SUN H J, ZHANG H L, XIAO H D, et al. Wheat straw biochar application increases ammonia volatilization from an urban compacted soil giving a short-term reduction in fertilizer nitrogen use efficiency[J]. Journal of Soils and Sediments, 2019, 19(4): 1624-1631.
DOI URL |
| [35] | 邹娟, 胡学玉, 张阳阳, 等. 不同地表条件下生物炭对土壤氨挥发的影响[J]. 环境科学, 2018, 39(1): 348-354. |
| ZOU J, HU X Y, ZHANG Y Y, et al. Effect of biochar on ammonia volatilization from soils of different surface conditions[J]. Environmental Science, 2018, 39(1): 348-354. (in Chinese with English abstract) | |
| [36] | 周玉玲, 侯朋福, 李刚华, 等. 两种土壤增效剂对稻田氨挥发排放的影响[J]. 环境科学, 2019, 40(8): 3746-3752. |
| ZHOU Y L, HOU P F, LI G H, et al. Effect of two soil synergists on ammonia volatilization in paddy fields[J]. Environmental Science, 2019, 40(8): 3746-3752. (in Chinese with English abstract) | |
| [37] |
MANDAL S, DONNER E, SMITH E, et al. Biochar with near-neutral pH reduces ammonia volatilization and improves plant growth in a soil-plant system: a closed chamber experiment[J]. Science of the Total Environment, 2019, 697: 134114.
DOI URL |
| [1] | 苏扬, 商小兰, 钱忠明, 吴林根, 黄佳琦, 庄海峰, 赵宇飞, 党洪阳, 徐立军. 腐熟剂与生物炭协同强化秸秆还田对土壤质量和水稻生长的影响[J]. 浙江农业学报, 2025, 37(5): 1139-1148. |
| [2] | 武佳龙, 迟铭, 高燕, 王祥, 沈海鸥. 施加生物炭对黑土区坡耕地土壤主要理化指标的动态影响[J]. 浙江农业学报, 2024, 36(9): 2060-2069. |
| [3] | 傅志强, 刘祯, 马春花, 温梦玲, 奚如春. 生物炭及炭基肥对土壤质量与植物生长的影响[J]. 浙江农业学报, 2024, 36(7): 1634-1645. |
| [4] | 俞朝, 王音予, 刘奇珍, 王芸, 沈泓, 冯英. 不同原料生物炭与无机钝化剂配施对小白菜地上部镉积累和土壤镉钝化的影响[J]. 浙江农业学报, 2024, 36(3): 613-621. |
| [5] | 马玲, 张镇武, 方英姿, 吴慧欣, 邢承华. 减氮配施生物炭对椪柑生长发育与土壤特性的影响[J]. 浙江农业学报, 2024, 36(12): 2739-2747. |
| [6] | 吴雨珂, 王峰, 王依凡, 吴雪萍, 朱维琴. 牛粪蚯蚓堆肥条件优化与堆制物的性状变化[J]. 浙江农业学报, 2024, 36(10): 2308-2315. |
| [7] | 韩静, 朱依婷, 郑驰, 马莉红, 张亚男, 曾秋艳, 刘书亮, 陈姝娟. 毛豆壳生物炭的活化及其对甲萘威的吸附性能[J]. 浙江农业学报, 2023, 35(9): 2202-2211. |
| [8] | 徐洋, 任奕林, 王浩杰, 黄秋航, 邢博源, 曹红亮. 不同制备条件下油菜秸秆生物炭用作缓释载体的综合评价[J]. 浙江农业学报, 2023, 35(4): 893-902. |
| [9] | 阮泽斌, 王兰鸽, 蓝王凯宁, 徐彦, 陈俊辉, 柳丹. 氮肥减量配施生物炭对水稻氮素吸收和土壤理化性质的影响[J]. 浙江农业学报, 2023, 35(2): 394-402. |
| [10] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
| [11] | 崔文芳, 陈静, 鲁富宽, 秦丽, 秦德志, 王利平, 高聚林. 生物炭结合氮肥减量对玉米产量和氮效率的影响[J]. 浙江农业学报, 2022, 34(2): 248-254. |
| [12] | 夏苏敬, 乔月, 朱建强. 调整氮肥基追比减少稻田氮素损失和保证直播稻产量[J]. 浙江农业学报, 2022, 34(11): 2482-2490. |
| [13] | 吴佩聪, 张鹏, 单颖, 邹刚华, 丁哲利, 朱治强, 赵凤亮. 秸秆炭化还田对热带土壤-水稻体系氨挥发的影响[J]. 浙江农业学报, 2021, 33(4): 678-687. |
| [14] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
| [15] | 苏瑶, 贾生强, 何振超, 杨艳华, 喻曼, 陈喜靖, 沈阿林. 利用响应曲面法优化秸秆腐熟剂的腐解条件[J]. 浙江农业学报, 2019, 31(5): 798-805. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||